Автоматическое распознавание топонимов: новые вызовы для цифровой картографии
DOI:
https://doi.org/10.52575/2712-7443-2025-49-3-477-499Ключевые слова:
топонимы, распознавание текста, геоинформационные системы, исторические карты, компьютерное зрениеАннотация
В статье представлен комплексный анализ современных методов автоматического распознавания топонимов на географических картах и в текстах. Проведено сравнение вычислительных подходов, включая графовые методы (MST), ансамблевые алгоритмы, морфологические операции и лексико-семантические методы. Авторы рассматривают вызовы, связанные с многословными топонимами, неоднозначностью географических названий и визуальными особенностями карт. Особое внимание уделяется метрикам оценки эффективности и вычислительной сложности алгоритмов. Проведена систематизация методологических этапов обработки топонимов с учетом российских и зарубежных исследований. Исследование выявляет ключевые проблемы в области распознавания географических названий: высокую плотность информации на картах, пересечение текстовых меток с другими картографическими элементами, разнообразие шрифтов, размеров и ориентаций текста. Анализируются вычислительные особенности и точность различных подходов, от традиционных методов до современных архитектур глубокого обучения. Предложена концепция комплексной архитектуры автоматического распознавания топонимов, интегрирующая методы компьютерного зрения, обработки естественного языка и пространственного анализа. Авторы демонстрируют, что наиболее перспективным направлением является создание адаптивных систем, способных динамически выбирать оптимальный набор алгоритмов в зависимости от характеристик обрабатываемых данных и задач конкретного исследования.
Скачивания
Библиографические ссылки
Список литературы
Аналакова О., Еллыева О. 2024. Использование искусственного интеллекта для анализа пространственных данных и выявления закономерностей в картографии. Инновационная наука, 5–2–2: 158–160.
Баталов Д.С., Бессмертный И.В. 2023. Применение искусственного интеллекта в топонимике. Обзор методов искусственного интеллекта и научных работ. В кн.: Географические аспекты устойчивого развития регионов. V Международная научно-практическая конференция, Гомель, 25–26 мая 2023. Гомель, Гомельский государственный университет имени Франциска Скорины: 372–376.
Боярский К.К., Каневский Е.А., Буторина Д.А. 2019. К вопросу о разрешении семантической омонимии топонимов в русскоязычных текстах. Компьютерная лингвистика и вычислительные онтологии, 3: 19–28. https://doi.org/10.17586/2541-9781-2019-3-19-28
Вицентий А.В., Диковицкий В.В., Шишаев М.Г. 2020. Технология извлечения и визуализации пространственных данных, полученных при анализе текстов. Труды Кольского научного центра РАН, 11(8(11)): 115–119. https://doi.org/10.37614/2307-5252.2020.8.11.012
Вицентий А.В., Шишаев М.Г. 2021. Технология извлечения геоатрибутированных сущностей для визуального представления пространственной связности объектов на основе автоматизированной генерации картосхем. Труды Кольского научного центра РАН. Информационные технологии, 12(5): 35–49.
Дмитриев А.В. 2025. Ранний этап в методологии автоматического распознавания топонимов на географических картах и в текстах. Региональные геосистемы, 49(1): 128–145. https://doi.org/10.52575/2712-7443-2025-49-1-128-145
Крейдлин Л.Г. 2006. Программа выделения русских индивидуализированных именных групп TagLite. В кн.: Компьютерная лингвистика и интеллектуальные технологии. Ежегодная международная конференция «Диалог», Москва, 01–04 июня 2016. М., Наука: 292–297.
Ardanuy M.C., Sporleder C. 2017. Toponym Disambiguation in Historical Documents Using Semantic and Geographic Features. Proceedings of the 2nd International Conference on Digital Access to Textual Cultural Heritage, Göttingen, Germany: 175–180.
Baek Y., Lee B., Han D., Yun S., Lee H. 2019. Character Region Awareness for Text Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach: 9365–9374.
Bluche T. 2015. Deep Neural Networks for Large Vocabulary Handwritten Text Recognition. Computers and Society, Université Paris Sud, Paris. 20 p.
Chiang Y.Y., Leyk S., Knoblock C.A. 2014. A Survey of Digital Map Processing Techniques. ACM Computing Surveys (CSUR), 47(1): 1–44. https://doi.org/10.1145/2557423
De Cao N., Izacard G., Riedel S., Petroni F. 2021. Autoregressive Entity Retrieval. Proceedings of the 9th International Conference on Learning Representations. Vienna, Austria, ICLR: 1–20.
Deseilligny M.P., Le Men H., Stamon G. 1995. Character String Recognition on Maps, a Rotation- invariant Recognition Method. Pattern Recognition Letters, 16(12): 1297–1310. https://doi.org/10.1016/0167-8655(95)00084-5
Epshtein B., Ofek E., Wexler, Y. 2010. Detecting Text in Natural Scenes with Stroke Width Transform. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, 13–18 June 2010. USA, San Francisco, CA: 2963–2970.
Fletcher L.A., Kasturi R. 1988. A Robust Algorithm for Text String Separation from Mixed Text/graphics Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6): 910–918.
Gelbukh A., Levachkine S. 2002. Error Detection and Correction in Toponym Recognition in Cartographic Maps. IASTED International Conference Geopro-2002: 1–7.
Gelbukh A., Levachkine S., Han S.Y. 2003. Resolving Ambiguities in Toponym Recognition in Cartographic Maps. In: Graphics Recognition. Recent Advances and Perspectives. Berlin, Heidelberg, Springer Berlin Heidelberg: 75–86.
Gregory I., Donaldson C., Murrieta-Flores P., Rayson P. 2015. Geoparsing, GIS, and Textual Analysis: Current Developments in Spatial Humanities Research. International Journal of Humanities and Arts Computing, 9(1): 1–14. https://doi.org/10.3366/ijhac.2015.0135
Gritta M., Pilehvar M., Collier N. 2018. Which Melbourne? Augmenting Geocoding with Maps. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Australia, Melbourne: 1285–1296.
Hu X., Al-Olimat H., Kersten J., Wiegmann M., Klan F., Sun Y., Fan H. 2021. GazPNE: Annotation-free Deep Learning for Place Name Extraction from Microblogs Leveraging Gazetteer and Synthetic Data by Rules. International Journal of Geographical Information Science, 36(2): 310–337. https://doi.org/10.1080/13658816.2021.1947507
Hu X., Sun Y., Kersten J., Zhou Z., Klan F., Fan H. 2023. How Can Voting Mechanisms Improve the Robustness and Generalizability of Toponym Disambiguation? International Journal of Applied Earth Observations and Geoinformation, 117: 103191. https://doi.org/10.1016/j.jag.2023.103191
Hu X., Zhou Z., Li H., Hu Y., Gu F., Kersten J., Fan H., Klan F. 2022a. Location Reference Recognition from Texts: A Survey and Comparison. ACM Computing Surveys, 56(5): 1–37. https://doi.org/10.1145/3625819
Hu X., Zhou Z., Sun Y., Kersten J., Klan, F., Fan H., Wiegmann M. 2022b. GazPNE2: A General Place Name Extractor for Microblogs Fusing Gazetteers and Pretrained Transformer Models. IEEE Internet of Things Journal, 9(17): 16259–16271. https://doi.org/10.1109/JIOT.2022.3150967
Kent A.J. 2008. Cartographic Blandscapes and the New Noise: Finding the Good View in a Topographical Mashup. The Bulletin of the Society of Cartographers, 42(1–2): 29–37.
Kyramargiou E., Papakondylis Y., Scalora F., Dimitropoulos D. 2020. Changing the Map in Greece and Italy: Place-name Changes in the Nineteenth Century. The Historical Review/La Revue Historique, 17: 205–250. https://doi.org/10.12681/hr.27072
Lenc L., Martínek J., Baloun J., Prantl M., Král P. 2022. Historical Map Toponym Extraction for Efficient Information Retrieval. In: Document Analysis Systems. Cham: Springer International Publishing: 171–183. https://doi.org/10.1007/978-3-031-06555-2_12
Milleville K., Verstockt S., Van de Weghe N. 2020. Improving Toponym Recognition Accuracy of Historical Topographic Maps. In: Automatic Vectorisation of Historical Maps. International workshop organized by the ICA Commission on Cartographic Heritage into the Digital, Budapest, 13 March 2020. Budapest, Department of Cartography and Geoinformatics: 63–72.
Neumann L., Matas J. 2010. A Method for Text Localization and Recognition in Real-world Images. In: Computer Vision – ACCV 2010. Proceedings of the 10th Asian Conference on Computer Vision, New Zealand, 8–12 November 2010. Berlin, Heidelberg, Springer: 770–783.
Neumann L., Matas J. 2012. Real-time Scene Text Localization and Recognition. In: ACM Transactions on Multimedia Computing, Communications, and Applications. IEEE Conference on Computer Vision and Pattern Recognition, 16–21 June 2012. RI, USA, Providence: 3538–3545.
Olson R., Kim J., Chiang Y.Y. 2023. An Automatic Approach to Finding Geographic Name Changes on Historical Maps. In: ACM SIGSPATIAL GIS 2023. Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems, Hamburg, 13–16 November 2023. Germany, Hamburg, Association for Computing Machinery: 1–2.
Olson R., Kim J., Chiang Y.Y. 2024. Automatic Search of Multiword Place Names on Historical Maps. In: GeoSearch 2024. Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Searching and Mining Large Collections of Geospatial Data, Atlanta, 29 October 2024. Atlanta, Association for Computing Machinery: 9–12.
Pezeshk A., Tutwiler R.L. 2011. Automatic Feature Extraction and Text Recognition from Scanned Topographic Maps. IEEE Transactions on Geoscience and Remote Sensing, 49(12): 5047–5063. https://doi.org/10.1109/TGRS.2011.2157697
Pierrot-Deseilligny M., Men H.L., Stamon G. 1995. Characters String Recognition on Maps, a Method for High Level Reconstruction. In: ICDAR '95. Proceedings of the Third International Conference on Document Analysis and Recognition, Montreal, 14–16 August 1995. QC, Canada, Montreal: 249–252.
Pouderoux J., Gonzato J-Ch., Pereira A., Guitton P. 2007. Toponym Recognition in Scanned Color Topographic Maps. In: ICDAR '07. Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), Curitiba, 23–26 September 2007. Brazil, Curitiba: 531–535.
Schlegel I. 2021. Automated Extraction of Labels from Large-scale Historical Maps. AGILE GIScience Series, 2(12): 1–14.
Scott P., Bader M. K-F., Burgess T., Hardy G., Williams N. 2019. Global Biogeography and Invasion Risk of the Plant Pathogen Genus Phytophthora. Environmental Science and Policy, 101: 175–182. https://doi.org/10.1016/j.envsci.2019.08.020
Sekido I. 2019. Historical GIS Materials for South Asia Studies in the University of Tokyo. Journal of Urban and Regional Studies on Contemporary India, 5(2): 23–27.
Sevgili Ö., Shelmanov A., Arkhipov M., Panchenko A., Biemann C. 2022. Neural Entity Linking: A Survey of Models Based on Deep Learning. Semantic Web, 13(3): 527–570. https://doi.org/10.3233/SW-222986
Smith D.A., Crane G.R. 2001. Disambiguating Geographic Names in a Historical Digital Library. In: Research and Advanced Technology for Digital Libraries. International Conference on Theory and Practice of Digital Libraries, Berlin, 30 August 2001. Berlin, Heidelberg, Springer Berlin Heidelberg: 127–136.
Weissenbacher D., Tahsin T., Beard R., Figaro M., Rivera R., Scotch M., Gonzalez G. 2015. Knowledge- driven Geospatial Location Resolution for Phylogeographic Models of Virus Migration. Bioinformatics, 31(12): 348–356. https://doi.org/10.1093/bioinformatics/btv259
Woodruff A.G., Plaunt Chr. 1994. GIPSY: Automated Geographic Indexing of Text Documents. Journal of the American Society for Information Science, 45(9): 645–655.
Wu L., Petroni F., Josifoski M., Riedel S., Zettlemoyer L. 2020. Zero-shot Entity Linking with Dense Entity Retrieval. In: Computation and Language. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Stroudsburg, 16–20 November 2020. Stroudsburg, Association for Computational Linguistics: 6397–6407.
Zhang Y., Chen Z., Zheng X., Chen N., Wang Y. 2021. Extracting the Location of Flooding Events in Urban Systems and Analyzing the Semantic Risk Using Social Sensing Data. Journal of Hydrology, 603(4): 127053. https://doi.org/10.1016/j.jhydrol.2021.127053
Zhou X., Yao C., Wen H., Wang Y., Zhou S., He W., Liang J. 2017. EAST: an Efficient and Accurate Scene Text Detector. In: Computer Science. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21–26 July 2017. HI, USA, Honolulu: 5551–5560.
References
Analakova O., Yollyyeva O. 2024. Using Artificial Intelligence to Analyze Spatial Data and Identify Patterns in Cartography. Innovacionnaja nauka, 5–2–2: 158–160 (in Russian).
Batalov D.S., Bessmertniy I.V. 2023. Primenenie iskusstvennogo intellekta v toponimike. Obzor metodov iskusstvennogo intellekta i nauchnyh rabot [Application of Artificial Intelligence in Toponymy. Review of Artificial Intelligence Methods and Scientific Works]. In: Geograficheskie aspekty ustojchivogo razvitija regionov [Geographical Aspects of Sustainable Development of Regions]. V International Scientific and Practical Conference, Gomel, 25–26 May 2023. Gomel, Pabl. Gomelskiy gosudarstvennyy universitet imeni Frantsiska Skoriny: 372–376.
Boyarsky K.K., Kanevsky E.A., Butorina D.A. 2019. On the Issue of the Semantic Disambiguation of Toponyms in Russian Texts. Computer Linguistics and Computing Ontologies, 3: 19–28 (in Russian). https://doi.org/10.17586/2541-9781-2019-3-19-28
Vicentiy A.V., Dikovitsky V.V., Shishaev M.G. 2020. The Technology of Extraction and Visualization of Spatial Data Obtained by Texts Analysis. Kola Science Centre Publisher, 11(8(11)): 115–119 (in Russian). https://doi.org/10.37614/2307-5252.2020.8.11.012
Vicentiy A.V., Shishaev M.G. 2021. The Geoattributed Entity Extraction Technology for Visual Representation of Objects Spatial Relations Based on Automated Schematic Map Generation. Transactions of the Kola Science Centre. Information technologies, 12(5): 35–49 (in Russian)
Dmitriev A.V. 2025. The Early Stage in the Methodology of Automatic Toponym Recognition on Geographic Maps and in Texts. Regional Geosystems, 49(1): 128–145 (in Russian). https://doi.org/10.52575/2712-7443-2025-49-1-128-145
Kreydlin L.G. 2005. TagLite: The Program of Identification of Russian Individualized NPs. In: Computational Linguistics and Intellectual Technologies. Annual International Conference "Dialogue", Moscow, 01–04 June 2016. Moscow, Pabl. Nauka: 292–297 (in Russian).
Ardanuy M.C., Sporleder C. 2017. Toponym Disambiguation in Historical Documents Using Semantic and Geographic Features. Proceedings of the 2nd International Conference on Digital Access to Textual Cultural Heritage, Göttingen, Germany: 175–180.
Baek Y., Lee B., Han D., Yun S., Lee H. 2019. Character Region Awareness for Text Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach: 9365–9374.
Bluche T. 2015. Deep Neural Networks for Large Vocabulary Handwritten Text Recognition. Computers and Society, Université Paris Sud, Paris. 20 p.
Chiang Y.Y., Leyk S., Knoblock C.A. 2014. A Survey of Digital Map Processing Techniques. ACM Computing Surveys (CSUR), 47(1): 1–44. https://doi.org/10.1145/2557423
De Cao N., Izacard G., Riedel S., Petroni F. 2021. Autoregressive Entity Retrieval. Proceedings of the 9th International Conference on Learning Representations. Vienna, Austria, ICLR: 1–20.
Deseilligny M.P., Le Men H., Stamon G. 1995. Character String Recognition on Maps, a Rotation- invariant Recognition Method. Pattern Recognition Letters, 16(12): 1297–1310. https://doi.org/10.1016/0167-8655(95)00084-5
Epshtein B., Ofek E., Wexler, Y. 2010. Detecting Text in Natural Scenes with Stroke Width Transform. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, 13–18 June 2010. USA, San Francisco, CA: 2963–2970.
Fletcher L.A., Kasturi R. 1988. A Robust Algorithm for Text String Separation from Mixed Text/graphics Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6): 910–918.
Gelbukh A., Levachkine S. 2002. Error Detection and Correction in Toponym Recognition in Cartographic Maps. IASTED International Conference Geopro-2002: 1–7.
Gelbukh A., Levachkine S., Han S.Y. 2003. Resolving Ambiguities in Toponym Recognition in Cartographic Maps. In: Graphics Recognition. Recent Advances and Perspectives. Berlin, Heidelberg, Springer Berlin Heidelberg: 75–86.
Gregory I., Donaldson C., Murrieta-Flores P., Rayson P. 2015. Geoparsing, GIS, and Textual Analysis: Current Developments in Spatial Humanities Research. International Journal of Humanities and Arts Computing, 9(1): 1–14. https://doi.org/10.3366/ijhac.2015.0135
Gritta M., Pilehvar M., Collier N. 2018. Which Melbourne? Augmenting Geocoding with Maps. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Australia, Melbourne: 1285–1296.
Hu X., Al-Olimat H., Kersten J., Wiegmann M., Klan F., Sun Y., Fan H. 2021. GazPNE: Annotation-free Deep Learning for Place Name Extraction from Microblogs Leveraging Gazetteer and Synthetic Data by Rules. International Journal of Geographical Information Science, 36(2): 310–337. https://doi.org/10.1080/13658816.2021.1947507
Hu X., Sun Y., Kersten J., Zhou Z., Klan F., Fan H. 2023. How Can Voting Mechanisms Improve the Robustness and Generalizability of Toponym Disambiguation? International Journal of Applied Earth Observations and Geoinformation, 117: 103191. https://doi.org/10.1016/j.jag.2023.103191
Hu X., Zhou Z., Li H., Hu Y., Gu F., Kersten J., Fan H., Klan F. 2022a. Location Reference Recognition from Texts: A Survey and Comparison. ACM Computing Surveys, 56(5): 1–37. https://doi.org/10.1145/3625819
Hu X., Zhou Z., Sun Y., Kersten J., Klan, F., Fan H., Wiegmann M. 2022b. GazPNE2: A General Place Name Extractor for Microblogs Fusing Gazetteers and Pretrained Transformer Models. IEEE Internet of Things Journal, 9(17): 16259–16271. https://doi.org/10.1109/JIOT.2022.3150967
Kent A.J. 2008. Cartographic Blandscapes and the New Noise: Finding the Good View in a Topographical Mashup. The Bulletin of the Society of Cartographers, 42(1–2): 29–37.
Kyramargiou E., Papakondylis Y., Scalora F., Dimitropoulos D. 2020. Changing the Map in Greece and Italy: Place-name Changes in the Nineteenth Century. The Historical Review/La Revue Historique, 17: 205–250. https://doi.org/10.12681/hr.27072
Lenc L., Martínek J., Baloun J., Prantl M., Král P. 2022. Historical Map Toponym Extraction for Efficient Information Retrieval. In: Document Analysis Systems. Cham: Springer International Publishing: 171–183. https://doi.org/10.1007/978-3-031-06555-2_12
Milleville K., Verstockt S., Van de Weghe N. 2020. Improving Toponym Recognition Accuracy of Historical Topographic Maps. In: Automatic Vectorisation of Historical Maps. International workshop organized by the ICA Commission on Cartographic Heritage into the Digital, Budapest, 13 March 2020. Budapest, Department of Cartography and Geoinformatics: 63–72.
Neumann L., Matas J. 2010. A Method for Text Localization and Recognition in Real-world Images. In: Computer Vision – ACCV 2010. Proceedings of the 10th Asian Conference on Computer Vision, New Zealand, 8–12 November 2010. Berlin, Heidelberg, Springer: 770–783.
Neumann L., Matas J. 2012. Real-time Scene Text Localization and Recognition. In: ACM Transactions on Multimedia Computing, Communications, and Applications. IEEE Conference on Computer Vision and Pattern Recognition, 16–21 June 2012. RI, USA, Providence: 3538–3545.
Olson R., Kim J., Chiang Y.Y. 2023. An Automatic Approach to Finding Geographic Name Changes on Historical Maps. In: ACM SIGSPATIAL GIS 2023. Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems, Hamburg, 13–16 November 2023. Germany, Hamburg, Association for Computing Machinery: 1–2.
Olson R., Kim J., Chiang Y.Y. 2024. Automatic Search of Multiword Place Names on Historical Maps. In: GeoSearch 2024. Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Searching and Mining Large Collections of Geospatial Data, Atlanta, 29 October 2024. Atlanta, Association for Computing Machinery: 9–12.
Pezeshk A., Tutwiler R.L. 2011. Automatic Feature Extraction and Text Recognition from Scanned Topographic Maps. IEEE Transactions on Geoscience and Remote Sensing, 49(12): 5047–5063. https://doi.org/10.1109/TGRS.2011.2157697
Pierrot-Deseilligny M., Men H.L., Stamon G. 1995. Characters String Recognition on Maps, a Method for High Level Reconstruction. In: ICDAR '95. Proceedings of the Third International Conference on Document Analysis and Recognition, Montreal, 14–16 August 1995. QC, Canada, Montreal: 249–252.
Pouderoux J., Gonzato J-Ch., Pereira A., Guitton P. 2007. Toponym Recognition in Scanned Color Topographic Maps. In: ICDAR '07. Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), Curitiba, 23–26 September 2007. Brazil, Curitiba: 531–535.
Schlegel I. 2021. Automated Extraction of Labels from Large-scale Historical Maps. AGILE GIScience Series, 2(12): 1–14.
Scott P., Bader M. K-F., Burgess T., Hardy G., Williams N. 2019. Global Biogeography and Invasion Risk of the Plant Pathogen Genus Phytophthora. Environmental Science and Policy, 101: 175–182. https://doi.org/10.1016/j.envsci.2019.08.020
Sekido I. 2019. Historical GIS Materials for South Asia Studies in the University of Tokyo. Journal of Urban and Regional Studies on Contemporary India, 5(2): 23–27.
Sevgili Ö., Shelmanov A., Arkhipov M., Panchenko A., Biemann C. 2022. Neural Entity Linking: A Survey of Models Based on Deep Learning. Semantic Web, 13(3): 527–570. https://doi.org/10.3233/SW-222986
Smith D.A., Crane G.R. 2001. Disambiguating Geographic Names in a Historical Digital Library. In: Research and Advanced Technology for Digital Libraries. International Conference on Theory and Practice of Digital Libraries, Berlin, 30 August 2001. Berlin, Heidelberg, Springer Berlin Heidelberg: 127–136.
Weissenbacher D., Tahsin T., Beard R., Figaro M., Rivera R., Scotch M., Gonzalez G. 2015. Knowledge- driven Geospatial Location Resolution for Phylogeographic Models of Virus Migration. Bioinformatics, 31(12): 348–356. https://doi.org/10.1093/bioinformatics/btv259
Woodruff A.G., Plaunt Chr. 1994. GIPSY: Automated Geographic Indexing of Text Documents. Journal of the American Society for Information Science, 45(9): 645–655.
Wu L., Petroni F., Josifoski M., Riedel S., Zettlemoyer L. 2020. Zero-shot Entity Linking with Dense Entity Retrieval. In: Computation and Language. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Stroudsburg, 16–20 November 2020. Stroudsburg, Association for Computational Linguistics: 6397–6407.
Zhang Y., Chen Z., Zheng X., Chen N., Wang Y. 2021. Extracting the Location of Flooding Events in Urban Systems and Analyzing the Semantic Risk Using Social Sensing Data. Journal of Hydrology, 603(4): 127053. https://doi.org/10.1016/j.jhydrol.2021.127053
Zhou X., Yao C., Wen H., Wang Y., Zhou S., He W., Liang J. 2017. EAST: an Efficient and Accurate Scene Text Detector. In: Computer Science. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21–26 July 2017. HI, USA, Honolulu: 5551–5560.
Просмотров аннотации: 67
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2025 Региональные геосистемы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
