Areas of Potential Blue Carbon Accumulation in the Russian Arctic Identified by Landsat Imagery

The research was carried out with the support of the project “Carbon absorption potential of coastal wetlands under climate change” within the framework of Agreement with the Ministry of Science and Higher Education of the Russian Federation No. 075-15-2024-656 dated September 11, 2024.

Authors

  • Igor Yu. Savin V.V. Dokuchaev Soil Science Institute
  • Pavel V. Krasilnikov Lomonosov Moscow State University
  • Elena Yu. Prudnikova V.V. Dokuchaev Soil Science Institute
  • Darya A. Zhulidova Lomonosov Moscow State University
  • Sergey A. Avetyan Lomonosov Moscow State University
  • Mikhail A. Tseits Lomonosov Moscow State University

DOI:

https://doi.org/10.52575/2712-7443-2025-49-4-794-813

Keywords:

blue carbon, Landsat 8-9, periodic inundation zone, the Arctic Ocean, NDVI

Abstract

The coastal blue carbon budget is largely determined by the vegetation and processes occurring in the periodically flooded coastal zone, as well as the fluxes of matter from land to sea resulting from water and wind erosion and shoreline destruction. In this regard, it appears important to delineate the periodically flooded zone and to assess its condition in terms of the presence of vegetation and the potential for erosion on adjacent shoreline soils. Using the archive of Landsat 8-9 satellite data for the period from 2014 to 2024, we analyzed the dynamics of the coastline of the Russian sector of the Arctic Ocean. Zones that are periodically flooded were identified. We estimated the potential amount of aboveground phytomass in the periodic inundation zone and revealed the areas where the phytomass was absent and where it content was highest. The analysis of the adjacent coastal soils revealed areas with a high potential for organic matter export to the coastal zone as a result of soil erosion and shoreline destruction. According to the data obtained, the area of the periodically flooded coastal zone in the Russian sector of the Arctic Ocean (excluding a similar zone in the island part of the region) exceeds 46 thousand km2. We have identified 24 largest zones that are distributed fairly evenly along the coast. The easternmost part of the coast proves to be the only area with no large zones identified. Taking into account the potential carbon input into the coastal zone from coastal soils, we have established that the zones with the greatest potential for blue coastal carbon accumulation are in the area of the Cheshskaya Bay, the mouth of the Pechora (the Barents Sea) and the Ob (the Kara Sea), the Tazovskaya Bay (the Kara Sea) and the mouth of the Kolyma (the East Siberian Sea). The lowest potential is characteristic of the Faddey Bay, the Teresa Klavenes Bay (the Laptev Sea), and the area near Vaigach Island (the Kara Sea). The results obtained will serve as a basis for more detailed modeling of the carbon balance in the coastal zone of the study area, as well as for the identification of sites for continuous monitoring of the coastal blue carbon balance.

Downloads

Download data is not yet available.

Author Biographies

Igor Yu. Savin, V.V. Dokuchaev Soil Science Institute

Professor, Doctor of Agricultural Sciences, Academician of the Russian Academy of Sciences, Moscow, Russia
E-mail: savin_iyu@esoil.ru

Pavel V. Krasilnikov, Lomonosov Moscow State University

Professor, Doctor of Biological Sciences, Corresponding member of the Russian Academy of Sciences, Department of Soil Studies, Moscow, Russia

Elena Yu. Prudnikova, V.V. Dokuchaev Soil Science Institute

Candidate of Biological Sciences, Moscow, Russia

Darya A. Zhulidova, Lomonosov Moscow State University

Postgraduate student of the Department of Soil Studies, Moscow, Russia

Sergey A. Avetyan, Lomonosov Moscow State University

Candidate of Biological Sciences, Department of Soil Studies, Moscow, Russia

Mikhail A. Tseits, Lomonosov Moscow State University

Candidate of Biological Sciences, Department of Soil Studies, Moscow, Russia

References

Список литературы

Алексеев Г.В. 1991. Климатический режим Арктики на рубеже ХХ и ХХI вв. СПб., Гидрометеоиздат, 256 с.

Арэ Ф.Э. 1985. Основы прогноза термоабразии. Новосибирск, Наука. Сибирское отделение, 172 с.

Васильев А.А., Остроумов В.Е., Губин С.В., Сороковиков В.А. 2007. Моделирование и прогноз термоабразии морских берегов Российской Арктики на ближайшие десятилетия. Криосфера Земли, 11(2): 60–67.

Балдина Е.А., Ширшова В.Ю., Романенко Ф.А., Луговой Н.Н., Жданова Е.Ю. 2022. Динамика береговой линии и состояния поверхности малых арктических островов (Визе и Ушакова) по разновременным оптическим и радиолокационным снимкам. Вестник Московского университета. Серия 5. География, 1: 107–121.

Григорьев М.Н., Разумов С.О., Куницкий В.В., Спектор В.Б. 2006. Динамика берегов восточных арктических морей России: основные факторы, закономерности и тенденции. Криосфера Земли, 10(4): 74–94.

Губин С.В., Лупачев А.В. 2023. Разнообразие строения и экологические функции почв побережий арктических морей. В кн.: Мерзлотные почвы в антропоцене. Всероссийская научно-практическая конференция, Салехард-Лабытнанги, 20–26 августа 2023. Сыктывкар, Коми научный центр УрО РАН: 10–11.

Единый государственный реестр почвенных ресурсов России. Версия 1.0. 2014. М., Почвенный институт им. В.В. Докучаева, 768 с.

Каплин П.А., Леонтьев О.К., Лукьянова С.А., Никифоров Л.Г. 1991. Берега. М., Мысль, 479 с.

Лавриненко И.А. 2012. Дистанционный мониторинг растительности маршей побережья Баренцева моря. Современные проблемы дистанционного зондирования Земли из космоса, 9(2): 67–72.

Лукьянова С.А., Сафьянов Г.А., Соловьева Г.Д., Шипилова Л.М. 2008. Типы арктических берегов России. Океанология, 48(2): 290–296.

Мартынов С.В. 2024. Природные условия прибрежной тундры Варандея. Трансформация естественных ландшафтов при антропогенном воздействии. Арктика и инновации, 2(3): 15–53. https://doi.org/10.21443/3034-1434-2024-2-3-15-53

Матвеева H.В., Лавриненко О.В. 2011. Растительность маршей северо-востока Малоземельской тундры. Растительность России, 17–18: 45–69.

Огородов С.А. 2010. Критерии стабильности (устойчивости) арктических берегов. Естественные и технические науки, 6(50): 356–358.

Разумов С.О. 2010. Мерзлота как фактор динамики береговой зоны восточных арктических морей России. Океанология, 50(2): 285–291.

Разумов С.О. 2018. Особенности реакции берегов восточных арктического морей России на климатические изменения. Наука и мир, 9–1(61): 70–72.

Сидорова В.А., Святова Е.Н., Цейц М.А. 2015. Пространственное варьирование свойств маршевых почв и их влияние на растительность (Кандалакшский залив). Почвоведение, 3: 259–267. https://doi.org/10.7868/S0032180X15030119

Смирнов И.П. 2015. Динамика прибрежных ландшафтов на северо-востоке острова Северный архипелага Новая Земля. Известия Русского географического общества, 147(3): 30–41.

Тишков А.А., Добрянский А.С., Кренке А.Н., Гнеденко А.Е. 2023. Изменение площади суши российской Арктики для освоения биотой. Арктика: экология и экономика, 13(2): 188–200. https://doi.org/10.25283/2223-4594-2023-2-188-200

Шамрикова Е.В., Денева С.В., Кубик О.С. 2019. Распределение углерода и азота в почвенном покрове прибрежной территории Баренцева моря (Хайпудырская губа). Почвоведение, 5: 558–569. https://doi.org/10.1134/S0032180X19030092

Шумовская Д.А. 2024. Разрушение берегов в морях российской Арктики. Проблемы окружающей среды и природных ресурсов, 3: 180–187. https://doi.org/10.36535/0235-5019-2024-03-6

Bertram C., Quaas M., Reusch T.B., Vafeidis A.T., Wolff C., Rickels W. 2021. The Blue Carbon Wealth of Nations. Nature Climate Change, 11(8): 704–709. https://doi.org/10.1038/s41558-021-01089-4

Chmura G.L., Anisfeld S.C., Cahoon D.R., Lynch J.C. 2003. Global Carbon Sequestration in Tidal, Saline Wetland Soils. Global biogeochemical cycles, 17(4): 11. https://doi.org/10.1029/2002GB001917

Couture N.J., Irrgang A., Pollard W., Lantuit H., Fritz M. 2018. Coastal Erosion of Permafrost Soils Along the Yukon Coastal Plain and Fluxes of Organic Carbon to the Canadian Beaufort Sea. Journal of Geophysical Research: Biogeosciences, 123(2): 406–422. https://doi.org/10.1002/2017JG004166

Elmahdy S.I., Ali T.A., Mohamed M.M., Howari F.M., Abouleish M. Simonet D. 2020. Spatiotemporal Mapping and Monitoring of Mangrove Forests Changes From 1990 to 2019 in the Northern Emirates, UAE Using Random Forest, Kernel Logistic Regression and Naive Bayes Tree Models. Frontiers in Environmental Science, 8: 102. https://doi.org/10.3389/fenvs.2020.00102

Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Kuenzer C., Bluemel A., Gebhardt S., Quoc T.V., Dech S. 2011. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3(5): 878–928. https://doi.org/10.3390/rs3050878

Lovelock C.E., Reef R. 2020. Variable Impacts of Climate Change on Blue Carbon. One Earth, 3(2), 195–211. https://doi.org/10.1016/j.oneear.2020.07.010

Marachtanov V.P. 2019. Storm Erosion of Arctic Coasts Under the Combined Action of Thermal and Mechanical Factors. Norwegian Journal of development of the international science, 30: 21–26.

Mcleod E., Chmura G.L., Bouillon S., Salm R., Björk M., Duarte C.M., Lovelock C.E., Schlesinger W.H., Silliman B.R. 2011. A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2. Frontiers in Ecology and the Environment, 9(10): 552–560. https://doi.org/10.1890/110004

Mcowen C., Weatherdon L.V., Bochove J., Sullivan E., Blyth S., Zockler C., Stanwell-Smith D., Kingston N., Martin C.S., Spalding M., Fletcher S. 2017. A Global Map of Saltmarshes (v6.1). Biodiversity Data Journal, 5: e11764. https://doi.org/10.3897/BDJ.5.e11764.

Murray N.J., Phinn S.R., Clemens R.S., Roelfsema C.M., Fuller R.A. 2012. Continental Scale Mapping of Tidal Flats Across East Asia Using the Landsat Archive. Remote Sensing, 4(11): 3417–3426. https://doi.org/10.3390/rs4113417

Nascimento Jr W.R., Souza-Filho P.W.M., Proisy C., Lucas R.M., Rosenqvist A. 2013. Mapping Changes in the Largest Continuous Amazonian Mangrove Belt Using Object-Based Classification of Multisensor Satellite Imagery. Estuarine, Coastal and Shelf Science, 117: 83–93. https://doi.org/10.1016/j.ecss.2012.10.005

Qiu S., Zhu Z., He B. 2019. Fmask 4.0: Improved Cloud and Cloud Shadow Detection in Landsats 4-8 and Sentinel-2 Imagery. Remote Sensing of Environment, 231: 111205. https://doi.org/10.1016/j.rse.2019.05.024.

Quevedo J.M.D., Uchiyama Y., Kohsaka R. 2021. A Blue Carbon Ecosystems Qualitative Assessment Applying the DPSIR Framework: Local Perspective of Global Benefits and Contributions. Marine Policy, 128: 104462. https://doi.org/10.1016/j.marpol.2021.104462

Sergienko L.A. 2013. Salt Marsh Flora and Vegetation of the Russian Arctic Coasts. Czech Polar Reports, 3(1): 30–37.

Souza-Filho P.W.M., Paradella W.R., Rodrigues S.W., Costa F.R., Mura J.C., Gonçalves F.D. 2011. Discrimination of Coastal Wetland Environments in the Amazon Region Based on Multi-Polarized L-band Airborne Synthetic Aperture Radar Imagery. Estuarine, Coastal and Shelf Science, 95(1): 88–98. https://doi.org/10.1016/j.ecss.2011.08.011

Spalding M., Kainuma M., Collins L. 2010. World Atlas of Mangroves. London, Routledge, 336 p.

Giri C., Ochieng E., Tieszen L., Zhu Z., Singh A., Loveland T. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159.

Suardana A.A.M.A.P., Anggraini N., Nandika M.R., Aziz K., As-syakur A.R., Ulfa A., Wijaya A.D., Prasetio W., Winarso G., Dewanti R. 2023. Estimation and Mapping Above-Ground Mangrove Carbon Stock Using Sentinel-2 Data Derived Vegetation Indices in Benoa Bay of Bali Province, Indonesia. Forest and Society, 7(1): 116–134. https://doi.org/10.24259/fs.v7i1.22062

Thomas S. 2014. Blue Carbon: Knowledge Gaps, Critical Issues, and Novel Approaches. Ecological Economics, 107: 22–38. https://doi.org/10.1016/j.ecolecon.2014.07.028

Vonk J.E., Sánchez-García L., Van Dongen B.E. 2012. Activation of Old Carbon by Erosion of Coastal and Subsea Permafrost in Arctic Siberia. Nature, 489(7414): 137–140.

Zhang Y., Guo L., Chen Y., Shi T., Luo M., Ju Q., Zhang H., Wang S. 2019. Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sensing, 11(14): 1683. https://doi.org/10.3390/rs11141683.

References

Alekseyev G.V. 1991. Klimaticheskiy rezhim Arktiki na rubezhe ХХ i XXI vv [Climatic Regime of the Arctic at the Turn of the 20th and 21st Centuries]. Saint Petersburg, Pabl. Gidrometeoizdat, 256 p.

Are F.E. 1985. Osnovy prognoza termoabrazii [Basics of Thermal Abrasion Forecasting]. Novosibirsk, Pabl. Nauka. Sibirskoe otdelenie, 172 p.

Vasiliev A.A., Ostroumov V.E., Gubin S.V., Sorokovikov V.A. 2007. Modelling and Prediction of Coastal Dynamics in Russian Arctic for Next Decades. Earth’s Cryosphere, 11(2): 60–67 (in Russian).

Baldina E.A., Shirshova V.Yu., Romanenko F.A., Lugovoi N.N., Zhdanova E.Yu. 2022. Dynamics of Coastline and Surface Conditions of the Small Arctic Islands (Vize and Ushakova) from Multitemporal Optical and Radar Images. Moscow University Bulletin. Series 5, Geography, 1: 107–121 (in Russian).

Grigoriev M.N., Razumov S.O., Kunitzkiy V.V., Spektor V.B. 2006. Dynamics of the Russian East Arctic Sea Coast: Major Factors, Regularities and Tendencies. Earth’s Cryosphere, 10(4): 74–94 (in Russian).

Gubin S.V., Lupachev A.V. 2023. Raznoobraziye stroyeniya i ekologicheskiye funktsii pochv poberezhiy arkticheskikh morey [Diversity of Structure and Ecological Functions of Soils on the Coasts of the Arctic Seas]. In: Merzlotnyye pochvy v antropotsene [Permafrost Soils in the Anthropocene]. All-Russian Scientific and Practical Conference, Salekhard-Labytnangi, 20–26 August 2023. Syktyvkar, Pabl. Komi nauchnyy tsentr UrO RAN: 10–11.

Yedinyy gosudarstvennyy reyestr pochvennykh resursov Rossii. Versiya 1.0 [Unified State Register of Soil Resources of Russia. Version 1.0]. 2014. Moscow, Pabl. Pochvennyy institut im. V.V. Dokuchayeva, 768 p.

Kaplin P.A., Leontyev O.K., Lukyanova S.A., Nikiforov L.G. 1991. Berega [Shores]. Moscow, Pabl. Mysl, 479 p.

Lavrinenko I.A. 2012. Distantsionnyy monitoring rastitel'nosti marshey poberezh'ya Barentseva morya [Remote Monitoring of Coastal Marsh Vegetation in the Barents Sea]. Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 9(2): 67–72.

Luk'yanova S.A., Saf'yanov G.A., Solov'yova G.D., Shipilova L.M. 2008. Types of Arctic Coasts of Russia. Oceanology, 48(2): 268–274 (in Russian). https://doi.org/10.1134/S0001437008020148

Martynov S.V. 2024. Natural conditions of Varandey coastal tundra. Anthropogenic transformation of natural landscapes. Arctic and Innovations, 2(3): 15–53 (in Russian). https://doi.org/10.21443/3034-1434-2024-2-3-15-53

Matveyeva N.V., Lavrinenko O.V. 2011. Marsh Vegetation in the North-East of Malozemelskaya Tundra. Vegetation of Russia, 17–18: 45–69 (in Russian).

Ogorodov S.A. 2010. Kriterii stabil'nosti (ustoychivosti) arkticheskikh beregov [Stability Criteria for the Arctic coasts]. Natural and technical sciences, 6(50): 356–358.

Razumov S.O. 2010. Permafrost as a Factor of the Dynamics of the Coastal Zone of the Russian East Arctic Seas. Oceanology, 50(2): 285–291 (in Russian).

Razumov S.O. 2018. Peculiarities of Reaction of Coast in the East Arctic Seas of Russia on Climatic Changes. Science and World, 9–1(61): 70–72 (in Russian).

Sidorova V.A., Svyatova E.N., Tseyts M.A. 2015. Spatial Variability of the Properties of Marsh Soils and Their Impact on Vegetation. Eurasian Soil Science, 48(3): 223–230 (in Russian). https://doi.org/10.1134/S1064229315030114

Smirnov I.P. 2015. Dynamics of Coastal Landscapes in the North-East of Northern Island of Novaya Zemlya Archipelago. Proceedings of the Russian Geographical Society, 147(3): 30–41 (in Russian).

Tishkov A.A., Dobryansky A.S., Krenke A.N., Gnedenko A.Ye. 2023. Changes in the Land Area of the Russian Arctic for the Biota Development. Arctic: Ecology and Economy, 13(2): 188–200 (in Russian). https://doi.org/10.25283/2223-4594-2023-2-188-200

Shamrikova E.V., Deneva S.V., Kubik O.S. 2019. Spatial Patterns of Carbon and Nitrogen in Soils of the Barents Sea Coastal Area (Khaypudyrskaya Bay). Eurasian Soil Science, 52(5): 507–517 (in Russian). https://doi.org/10.1134/S1064229319030098

Shumovskaya D.A. 2024. Shore Destruction in the Sea of the Russian Arctic. Problemy okruzhayushchey sredy i prirodnykh resursov, 3: 180–187 (in Russian). https://doi.org/10.36535/0235-5019-2024-03-6

Bertram C., Quaas M., Reusch T.B., Vafeidis A.T., Wolff C., Rickels W. 2021. The Blue Carbon Wealth of Nations. Nature Climate Change, 11(8): 704–709. https://doi.org/10.1038/s41558-021-01089-4

Chmura G.L., Anisfeld S.C., Cahoon D.R., Lynch J.C. 2003. Global Carbon Sequestration in Tidal, Saline Wetland Soils. Global biogeochemical cycles, 17(4): 11. https://doi.org/10.1029/2002GB001917

Couture N.J., Irrgang A., Pollard W., Lantuit H., Fritz M. 2018. Coastal Erosion of Permafrost Soils Along the Yukon Coastal Plain and Fluxes of Organic Carbon to the Canadian Beaufort Sea. Journal of Geophysical Research: Biogeosciences, 123(2): 406–422. https://doi.org/10.1002/2017JG004166

Elmahdy S.I., Ali T.A., Mohamed M.M., Howari F.M., Abouleish M. Simonet D. 2020. Spatiotemporal Mapping and Monitoring of Mangrove Forests Changes From 1990 to 2019 in the Northern Emirates, UAE Using Random Forest, Kernel Logistic Regression and Naive Bayes Tree Models. Frontiers in Environmental Science, 8: 102. https://doi.org/10.3389/fenvs.2020.00102

Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Kuenzer C., Bluemel A., Gebhardt S., Quoc T.V., Dech S. 2011. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3(5): 878–928. https://doi.org/10.3390/rs3050878

Lovelock C.E., Reef R. 2020. Variable Impacts of Climate Change on Blue Carbon. One Earth, 3(2), 195–211. https://doi.org/10.1016/j.oneear.2020.07.010

Marachtanov V.P. 2019. Storm Erosion of Arctic Coasts Under the Combined Action of Thermal and Mechanical Factors. Norwegian Journal of development of the international science, 30: 21–26.

Mcleod E., Chmura G.L., Bouillon S., Salm R., Björk M., Duarte C.M., Lovelock C.E., Schlesinger W.H., Silliman B.R. 2011. A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2. Frontiers in Ecology and the Environment, 9(10): 552–560. https://doi.org/10.1890/110004

Mcowen C., Weatherdon L.V., Bochove J., Sullivan E., Blyth S., Zockler C., Stanwell-Smith D., Kingston N., Martin C.S., Spalding M., Fletcher S. 2017. A Global Map of Saltmarshes (v6.1). Biodiversity Data Journal, 5: e11764. https://doi.org/10.3897/BDJ.5.e11764.

Murray N.J., Phinn S.R., Clemens R.S., Roelfsema C.M., Fuller R.A. 2012. Continental Scale Mapping of Tidal Flats Across East Asia Using the Landsat Archive. Remote Sensing, 4(11): 3417–3426. https://doi.org/10.3390/rs4113417

Nascimento Jr W.R., Souza-Filho P.W.M., Proisy C., Lucas R.M., Rosenqvist A. 2013. Mapping Changes in the Largest Continuous Amazonian Mangrove Belt Using Object-Based Classification of Multisensor Satellite Imagery. Estuarine, Coastal and Shelf Science, 117: 83–93. https://doi.org/10.1016/j.ecss.2012.10.005

Qiu S., Zhu Z., He B. 2019. Fmask 4.0: Improved Cloud and Cloud Shadow Detection in Landsats 4-8 and Sentinel-2 Imagery. Remote Sensing of Environment, 231: 111205. https://doi.org/10.1016/j.rse.2019.05.024.

Quevedo J.M.D., Uchiyama Y., Kohsaka R. 2021. A Blue Carbon Ecosystems Qualitative Assessment Applying the DPSIR Framework: Local Perspective of Global Benefits and Contributions. Marine Policy, 128: 104462. https://doi.org/10.1016/j.marpol.2021.104462

Sergienko L.A. 2013. Salt Marsh Flora and Vegetation of the Russian Arctic Coasts. Czech Polar Reports, 3(1): 30–37.

Souza-Filho P.W.M., Paradella W.R., Rodrigues S.W., Costa F.R., Mura J.C., Gonçalves F.D. 2011. Discrimination of Coastal Wetland Environments in the Amazon Region Based on Multi-Polarized L-band Airborne Synthetic Aperture Radar Imagery. Estuarine, Coastal and Shelf Science, 95(1): 88–98. https://doi.org/10.1016/j.ecss.2011.08.011

Spalding M., Kainuma M., Collins L. 2010. World Atlas of Mangroves. London, Routledge, 336 p.

Giri C., Ochieng E., Tieszen L., Zhu Z., Singh A., Loveland T. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159.

Suardana A.A.M.A.P., Anggraini N., Nandika M.R., Aziz K., As-syakur A.R., Ulfa A., Wijaya A.D., Prasetio W., Winarso G., Dewanti R. 2023. Estimation and Mapping Above-Ground Mangrove Carbon Stock Using Sentinel-2 Data Derived Vegetation Indices in Benoa Bay of Bali Province, Indonesia. Forest and Society, 7(1): 116–134. https://doi.org/10.24259/fs.v7i1.22062

Thomas S. 2014. Blue Carbon: Knowledge Gaps, Critical Issues, and Novel Approaches. Ecological Economics, 107: 22–38. https://doi.org/10.1016/j.ecolecon.2014.07.028

Vonk J.E., Sánchez-García L., Van Dongen B.E. 2012. Activation of Old Carbon by Erosion of Coastal and Subsea Permafrost in Arctic Siberia. Nature, 489(7414): 137–140.

Zhang Y., Guo L., Chen Y., Shi T., Luo M., Ju Q., Zhang H., Wang S. 2019. Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sensing, 11(14): 1683. https://doi.org/10.3390/rs11141683.


Abstract views: 17

Share

Published

2025-12-30

How to Cite

Savin, I. Y., Krasilnikov, P. V., Prudnikova, E. Y., Zhulidova, D. A., Avetyan, S. A., & Tseits, M. A. (2025). Areas of Potential Blue Carbon Accumulation in the Russian Arctic Identified by Landsat Imagery : The research was carried out with the support of the project “Carbon absorption potential of coastal wetlands under climate change” within the framework of Agreement with the Ministry of Science and Higher Education of the Russian Federation No. 075-15-2024-656 dated September 11, 2024. Regional Geosystems, 49(4), 794-813. https://doi.org/10.52575/2712-7443-2025-49-4-794-813

Issue

Section

Methodology of geosystems research

Most read articles by the same author(s)