Monitoring the Geospace of Volcano Hazard Areas

Authors

  • Vyacheslav A. Melkiy Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences
  • Daniil V. Dolgopolov Limited Liability Company the Pipeline Transport Institute (PTI, LLC), Sakhalin State University
  • Alexey A. Verkhoturov Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences

DOI:

https://doi.org/10.52575/2712-7443-2025-49-1-93-111

Keywords:

remote cadastral surveys, geospace of volcano hazard areas, volcanic activity, aerospace survey, zoning maps of territories, geoinformation technologies

Abstract

Various data on the dynamics of the state of volcanoes obtained using diverse monitoring tools, both ground-based and aerospace-based ones, needs timely and high-quality processing. Such an opportunity is provided by geoinformation technologies that allow collecting and analyzing spatially oriented data. The article examines the theoretical foundations of the branch of science that defines the principles of modeling the geospace of volcano hazard areas, which make it possible to form a single set of interdependent data from various sources. Monitoring of active volcanoes and timely notification of the population in emergency situations is one of the important tasks of safe life in volcano-prone areas. The research revealed the need to form a geospace of volcano hazard areas using data from modern remote sensing tools, geoinformation technologies, as well as geospatial and mathematical modeling methods. This will allow information support for measures to control active volcanoes, timely prevention, and elimination of the eruption consequences. Continuous updating of the cartographic documentation of volcano hazard areas cadastre with accurate geodetic reference is required in order to promptly analyze and predict the dynamics of volcanic processes affecting the climate and changing the content of greenhouse gases in the atmosphere and the state of ecosystems as a whole.

Acknowledgements: The research was supported by the project "Priorities 2030" of Sakhalin State University.

Downloads

Author Biographies

Vyacheslav A. Melkiy, Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences

Doctor of Engineering Sciences, Leading Researcher of the laboratory of Volcanology and volcanic hazard

E-mail: vamelkiy@mail.ru

Daniil V. Dolgopolov, Limited Liability Company the Pipeline Transport Institute (PTI, LLC), Sakhalin State University

Doctor of Engineering Sciences, Leading Researcher at the Laboratory for the development and maintenance of geoinformation systems and databases of the Center for monitoring and geoinformation systems of pipeline transport facilities; Leading Researcher of the laboratory of Chemical and Biological research

E-mail: d-daniil@yandex.ru

Alexey A. Verkhoturov, Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences

Candidate of Engineering Sciences, Senior Researcher of laboratories Island and Coastal Electric power systems

E-mail: ussr-91@mail.ru

References

Список источников

Геопортал Института вулканологии и сейсмологии ДВО РАН. 2024. Электронный ресурс. URL: http://geoportal.kscnet.ru/data.php (дата обращения 01.12.2024)

Долгополов Д.В., Камашев Р.А., Назаров Д.С., Удовиченко М.С. 2022. Свидетельство о государственной регистрации программы для ЭВМ № 2022662888 Российская Федерация. Технологическая цифровая платформа мониторинга природно-технологической среды: № 2022662580: заявл. 07.07.2022: опубл. 07.07.2022.

ТЕРРА ТЕХ. Сайт АО организации Госкорпорации «Роскосмос». 2024. Электронный ресурс. URL: https://terratech.ru/ (дата обращения 27.11.2024 г.).

Цыганов M. Кракатау – бедствие, которое вспоминают до сих пор. РИА Новости. Электронный ресурс. URL: https://ria.ru/20080827/150686556.html (дата обращения: 27.11.2024).

Global Volcanism Program. 2024. Volcanoes of the World (v. 5.2.4; 21 Oct 2024). Database. Electronic resource. Distributed by Smithsonian Institution, compiled by Venzke E. DOI: 10.5479/si.GVP.VOTW5-2024.5.2

King H.M. Volcanic Explosivity. Geology.com. Geoscience News and Information; 2005–2024. Electronic resource. URL: https://geology.com/stories/13/volcanic-explosivity-index/ (Date of circulation: 27.11.2024).

Список литературы

Антонов Е.С., Лисицкий Д.В., Янкелевич С.С. 2021. Теоретико-методологическое представление прямого перехода от геоинформации к геознаниям. Вестник СГУГиТ (Сибирского государственного университета геосистем и технологий), 26(2): 82–90. https://doi.org/10.33764/2411-1759-2021-26-2-82-90

Бекмурзаева Л.Р., Братков В.В., Керимов И.А. 2022. Современные климатические тенденции горных ландшафтов Северного Кавказа на фоне глобального изменения климата. Известия Дагестанского государственного педагогического университета. Естественные и точные науки, 16(3): 56–62. https://doi.org/10.31161/1995-0675-2022-16-3-56-62

Бондур В.Г. 1995. Принципы построения космической системы мониторинга Земли в экологических и природно-ресурсных целях. Известия высших учебных заведений. Геодезия и аэрофотосъемка, 2: 14–38.

Бондур В.Г., Кондратьев К.Я., Крапивин В.Ф., Савиных В.П. 2005. Проблемы мониторинга и предсказания природных катастроф. Исследование Земли из космоса, 1: 3–14.

Верхотуров А.А. 2024. Обоснование зонирования вулканического воздействия на примере г. Северо-Курильск. В кн.: Регулирование земельно-имущественных отношений в России: правовое и геопространственное обеспечение, оценка недвижимости, экология, технологические решения. Материалы Национальной научно-практической конференции, Новосибирск, 21–24 ноября 2024. Новосибирск, Сибирский государственный университет геосистем и технологий, 1: 100–106. https://doi.org/10.33764/2687-041X-2024-1-100-106

Гирина О.А., Лупян Е.А., Хорват А., Мельников Д.В., Маневич А.Г., Нуждаев А.А., Бриль А.А., Озеров А.Ю., Крамарева Л.С., Сорокин А.А. 2023. Анализ развития пароксизмального извержения вулкана Шивелуч 10–13 апреля 2023 года на основе данных различных спутниковых систем. Современные проблемы дистанционного зондирования Земли из космоса, 20(2): 283–291. https://doi.org/10.21046/2070-7401-2023-20-2-283-291.

Гусев А.П. 2023. Потоки метана в тропосфере: геологические и антропогенные источники (по данным Sentinel-5P TROPOMI). Региональные геосистемы, 47(4): 580–592. https://doi.org/10.52575/2712-7443-2023-47-4-580-592

Гусев В.Л., Потапов С.Л., Синькова М.Г. 2022. Оценка точности цифровых моделей рельефа и цифровых моделей местности из открытых источников. Известия высших учебных заведений. Геодезия и аэрофотосъемка, 66(1): 52–63. https://doi.org/10.30533/0536-101X-2022-66-1-52-63

Долгополов Д.В. 2020. Использование данных дистанционного зондирования Земли при формировании геоинформационного пространства трубопроводного транспорта. Вестник СГУГиТ (Сибирского государственного университета геосистем и технологий), 25(3): 151–159. https://doi.org/10.33764/2411-1759-2020-25-3-151-159.

Долгополов Д.В. 2021. Геопространство трубопроводного транспорта. Вестник СГУГиТ (Сибирского государственного университета геосистем и технологий), 26(1): 76–85. https://doi.org/10.33764/2411-1759-2021-26-1-76-85

Долгополов Д.В. Мелкий В.А., Верхотуров А.А. 2021. Геоинформационное обеспечение безопасной эксплуатации трубопроводного транспорта. Известия Томского политехнического университета. Инжиниринг георесурсов, 332(12): 52–63. https://doi.org/10.18799/24131830/2021/12/3028.

Дубровский А.В. 2022. Методические подходы к моделированию и прогнозированию рационального использования земельных ресурсов с применением геотехнологий. Вестник СГУГиТ (Сибирского государственного университета геосистем и технологий), 27(3): 145–156. https://doi.org/10.33764/2411-1759-2022-27-3-145-156.

Захарихина Л.В., Рашидов В.А., Аникин Л.П. 2021. Геохимия и потенциальное плодородие вулканических пеплов извержений вулканов Алаид и Эбеко (Курильские острова). Вулканология и сейсмология, 5: 46–62. https://doi.org/10.31857/S0203030621050072

Зверев А.Т., Малинников В.А. 2011. Космический геоэкологический мониторинг северных территорий России. Известия высших учебных заведений. Геодезия и аэрофотосъемка, 6: 68–73.

Зверев А.Т., Малинников В.А., Савиных В.П. 2011. Космический мониторинг динамики ледников Новой Земли и Земли Франца-Иосифа. Известия высших учебных заведений. Геодезия и аэрофотосъемка, 5: 72–75.

Карпик А.П. 2004. Методологические и технологические основы геоинформационного обеспечения территорий. Новосибирск, СГГА, 259 с.

Карпик А.П. 2013. Основные принципы формирования геодезического информационного пространства. Известия высших учебных заведений. Геодезия и аэрофотосъемка, S4: 73–78.

Карпик А.П., Лисицкий Д.В., Мусихин И.А. 2023. Развитие геопространственной деятельности в России: стратегические направления и первоочередные задачи. Геодезия и картография, 84(12): 49–58. https://doi.org/10.22389/0016-7126-2023-1002-12-49-58

Лисецкий Ф.Н., Голеусов П.В., Буряк Ж.А. 2024. Допустимые эрозионные потери почвы и скорости почвообразования в контексте регулирования углеродного баланса. Вестник Московского университета. Серия 17: Почвоведение, 79(3): 139–151. https://doi.org/10.55959/MSU0137-0944–17-2024-79-3-139-151

Мазарович А.О., Соколов С.Ю. 2022. Опасность разрушения вулкана Бернбург (остров Ян-Майен, Норвежско-Гренландское море). Доклады Российской академии наук. Науки о Земле, 504(2): 163–167. https://doi.org/10.31857/S2686739722060111

Мелкий В.А. 1999. Аэрокосмический мониторинг вулканоопасных территорий: теория и методы. Дис. ... докт. тех. наук. М., 337 с.

Мелкий В.А., Верхотуров А.А. 2022. Современное состояние растительного покрова вулкана Головнина по данным космических съемок (о. Кунашир, Курильские острова). Региональные геосистемы, 46(4): 555–573. https://doi.org/10.52575/2712-7443-2022-46-4-555-573

Мелкий В.А., Верхотуров А.А., Братков В.В. 2024. Зонирование воздействия вулкана Эбеко (Курильские острова) на прилегающие земли по данным материалов аэрокосмических съемок. Известия высших учебных заведений. Геодезия и аэрофотосъемка, 68(1): 21–32. https://doi.org/10.30533/GiA-2024-002

Рязанов С.С., Кулагина В.И. 2022. Сравнительная оценка вертикальной точности цифровых моделей высот – SRTM, ALOS WORLD 3D, ASTER GDEM и MERIT DEM на примере лесной и пойменной зоны национального парка «Нижняя Кама. Геосферные исследования, 1: 107–117. https://doi.org/10.17223/25421379/22/8

Сенюков С.Л., Нуждина И.Н., Дрознина С.Я. 2008. Пространственно-временной анализ землетрясений вулкана Ключевской за 1999-2007 гг. В кн.: Геофизический мониторинг и проблемы сейсмической безопасности Дальнего Востока России. Труды региональной научно-технической конференции, Петропавловск-Камчатский, 11–17 ноября 2007. Обнинск, Единая геофизическая служба Российской академии наук: 120–124.

Сывороткин В.Л. 2017. Извержения вулканов. Пространство и время, 1(27): 196–213.

Хорошилов В.С., Павловская О.Г., Кобелева Н.Н., Ямбаев Х.К. 2023. Математическое моделирование динамики перемещений оползневых склонов в условиях техногенных воздействий. Вестник СГУГиТ (Сибирского государственного университета геосистем и технологий), 28(1): 45–58. https://doi.org/10.33764/2411-1759-2023-28-1-45-58

Aveni S., Blackett M. 2022. The First Evaluation of the FY-3D/MERSI-2 Sensor’s Thermal Infrared Capabilities for Deriving Land Surface Temperature in Volcanic Regions: A Case Study of Mount Etna. International Journal of Remote Sensing, 43(8): 2777–2792. https://doi.org/10.1080/01431161.2022.2068360

Belousov A., Belousova M., Kotenko T., Auer A., Walter T.R. 2021. Mechanism of the Historical and the Ongoing Vulcanian Eruptions of Ebeko Volcano, Northern Kuriles. Bulletin of Volcanology, 83(1): 4. https://doi.org/10.1007/s00445-020-01426-z

Bisson K.M., Gassó S., Mahowald N., Wagner S., Koffman B., Carn S.A., Deutsch S., Gazel E., Kramer S., Krotkov N., Mitchell C., Pritchard M.E., Stamieszkin K., Wilson C. 2023. Observing Ocean Ecosystem Responses to Volcanic Ash. Remote Sensing of Environment, 296: 113749. https://doi.org/10.1016/j.rse.2023.113749

Burgisser A., Peccia A., Plank T., Moussallam Y. 2024. Numerical Simulations of the Latest Caldera-Forming Eruption of Okmok Volcano, Alaska. Bulletin of Volcanology, 86(9): 77. https://doi.org/10.1007/s00445-024-01765-1

Calvari S., Nunnari G. 2024. Reawakening of Voragine, the Oldest of Etna’s Summit Craters: Insights from a Recurrent Episodic Eruptive Behavior. Remote Sensing, 16(22): 4278. https://doi.org/10.3390/rs16224278

Campus A., Laiolo M., Massimetti F., Coppola D. 2022. The Transition from MODIS to VIIRS for Global Volcano Thermal Monitoring. Sensors, 22(5): 1713. https://doi.org/10.3390/s22051713

Chen J., Chen Y., Liu Z. 2021. Classification of Typical Tree Species in Laser Point Cloud Based on Deep Learning. Remote Sensing, 13(23): 4750. https://doi.org/10.3390/rs13234750

Chen Z., Jacob D.J., Nesser H., Sulprizio M.P., Lorente A., Varon D.J., Xiao Lu, Lu Shen, Qu Z., Penn E., Yu X. 2022. Methane Emissions from China: a High-Resolution Inversion of TROPOMI Satellite Observations. Atmospheric Chemistry and Physics, 22(16): 10809–10826. https://doi.org/10.5194/acp-22-10809-2022.

Fink J., Anderson S. 2023. Lessons Learned from the 1980–1986 Eruption of the Mount St. Helens Composite Lava Dome. Bulletin of Volcanology, 85(6): 35. https://doi.org/10.1007/s00445-023-01642-3

Genzano N., Marchese F., Plank S., Pergola N. 2023. Monitoring the Mauna Loa (Hawaii) Eruption of November–December 2022 from Space: Results from Goes-r, Sentinel-2 and Landsat-8/9 Observations. International Journal of Applied Earth Observation and Geoinformation, 122: 103388. https://doi.org/10.1016/j.jag.2023.103388

Khoroshilov V.S, Kobeleva N.N, Noskov M.F. 2022. Analysis of Possibilities to Use Predictive Mathematical Models for Studying the Dam Deformation State. Journal of Applied and Computational Mechanics, 8(2): 733–744. https://doi.org/10.22055/jacm.2022.38005.3129

Liu X, Lian X, Yang W, Wang F, Han Y, Zhang Y. 2022. Accuracy Assessment of a UAV Direct Georeferencing Method and Impact of the Configuration of Ground Control Points. Drones, 6(2): 30. https://doi.org/10.3390/drones6020030

Mannini S., Ruch J., Hazlett R.W., Downs D.T., Parcheta C.E., Lundblad S.P., Anderson J.L., Perry R., Oestreicher N. 2024. Tracking Magma Pathways and Surface Faulting in the Southwest Rift Zone and the Koaʻe Fault System (Kīlauea Volcano, Hawai‘i) Using Photogrammetry and Structural Observations. Bulletin of Volcanology, 86: 45. https://doi.org/10.1007/s00445-024-01735-7

Martí J., Becerril L., Rodríguez A. 2022. How Long-Term Hazard Assessment May Help to Anticipate Volcanic Eruptions: the Case of La Palma Eruption 2021 (Canary Islands). Journal of Volcanology and Geothermal Research, 431: 107699. https://doi.org/10.1016/j.jvolgeores.2022.107669

Ogburn S.E., Charlton D., Norgaard D., Wright H.M., Calder E.S., Lindsay J., Ewert J., Takarada S., Tajima Y. 2023. The Volcanic Hazard Maps Database: an initiative of the IAVCEI Commission on Volcanic Hazards and Risk. Journal of Applied Volcanology, 12: 2. https://doi.org/10.1186/s13617-022-00128-9

Peccia A., Moussallam Y., Plank T., DallaSanta K., Polvani L., Burgisser A., Larsen J., Schaefer J. 2023. A New Multi-Method Assessment of Stratospheric Sulfur Load from the Okmok II Caldera-Forming Eruption of 43 BCE. Geophysical Research Letters, 50(21): e2023GL103334. https://doi.org/10.1029/2023GL103334.

Ridolfi F., Almeev R.R., Ozerov A.Yu., Holtz F. 2023. Amp-TB2 Protocol and Its Application to Amphiboles from Recent, Historical and Pre-historical Eruptions of Bezymianny volcano, Kamchatka. Minerals, 13(11): 1394. https://doi.org/10.20944/preprints202309.2133.v1

Tesfaye W., Elias E., Warkineh B. Tekalign M., Abebe G. 2024. Modeling of Land Use and Land Cover Changes Using Google Earth Engine and Machine Learning Approach: Implications for Landscape Management. Environmental Systems Research, 13: 31. https://doi.org/10.1186/s40068-024-00366-3

Warwick R, Williams-Jones G, Kelman M, Witter J. 2022. A Scenario-Based Volcanic Hazard Assessment for the Mount Meager Volcanic Complex, British Columbia. Journal of Applied Volcanology, 11: 5. https://doi.org/ 10.1186/s13617-022-00114-1

References

Antonov E.S., Lisitsky D.V., Yankelevich S.S. 2021. Theoretical and Methodological Representation of the Direct Transition from Geoinformation to Geoscience. Vestnik of SGUGT (Siberian State University of Geosystems and Technologies), 26(2): 82–90. (in Russian). https://doi.org/10.33764/2411-1759-2021-26-2-82-90

Bekmurzaeva L.R., Bratkov V.V., Kerimov I.A. 2022. Current Climatic Trends in the Mountain Landscapes of the North Caucasus Against the Backdrop of Global Climate Change. Dagestan State Pedagogical University. Journal. Natural and Exact Sciences, 16(3): 56–62 (in Russian) https://doi.org/10.31161/1995-0675-2022-16-3-56-62

Bondur V.G. 1995. Printsipy postroyeniya kosmicheskoy sistemy monitoringa Zemli v ekologicheskikh i prirodno-resursnykh tselyakh [Principles of Building a Space System for Monitoring the Earth for Environmental and Natural Resource Purposes]. Izvestiya vysshikh uchebnykh zavedeniy. Geodesy and aerialphotography, 2: 14–38.

Bondur V.G., Kondratiev K.Ya., Krapivin V.F., Savinykh V.P. 2005. The Problems of Monitoring and Forecasting of Natural Catastrophes. Izvestiya. Atmospheric and Oceanic Physics, 1: 3–14 (in Russian).

Verkhoturov A.A. 2024. Obosnovanie zonirovaniya vulkanicheskogo vozdeystviya na primere g. Severo-Kuril'sk [Justification of Zoning of Volcanic Impact on the Example of Severo-Kurilsk city]. In: Regulirovanie zemel'no-imushchestvennykh otnosheniy v Rossii: pravovoe i geoprostranstvennoe obespechenie, otsenka nedvizhimosti, ekologiya, tekhnologicheskie resheniya [Regulation of Land and Property Relations in Russia: Legal and Geospatial Support, Real Estate Valuation, Ecology, Technological Solutions]. Materials of the National Scientific and Practical Conference, Novosibirsk, 21–24 November 2024. Novosibirsk, Pabl. Siberian State University of Geosystems and Technologies, 1: 100–106. https://doi.org/10.33764/2687-041X-2024-1-100-106

Girina O.A., Loupian E.A., Horvath A., Melnikov D.V., Manevich A.G., Nuzhdaev A.A., Bril A.A., Ozerov A.Yu., Kramareva L.S., Sorokin A.A. 2023. Analysis of the Development of the Paroxysmal Eruption of the Sheveluch Volcano on April 10–13, 2023, Based on Data from Various Satellite Systems. Modern problems of science and education, 20(2): 283–291 (in Russian). https://doi.org/10.21046/2070-7401-2023-20-2-283-291

Gusev A.P. 2023. Methane Flows in the Troposphere: Geological and Anthropogenic Sources (According to Sentinel-5P TROPOMI Data). Regional Geosystems, 47(4): 580–592 (in Russian). https://doi.org/10.52575/2712-7443-2023-47-4-580-592

Gusev V.L., Potapov S.L., Sinkova M.G. 2022. Open sources digital terrain model’s and digital elevation models accuracy estimation. Izvestia VUZOV. Geodesy and aerophotosurveying, 66(1): 52–63 (in Russian). https://doi.org/10.30533/0536-101X-2022-66-1-52-63

Dolgopolov D.V. 2020. Use of Earth Remote Sensing Data for Formation of Geodata Space of Pipeline Transport. Vestnik SGUGT (Siberian State University of Geosystems and Technologies), 25(3): 151–159 (in Russian). https://doi.org/10.33764/2411-1759-2020-25-3-151-159.

Dolgopolov D.V. 2021. Pipeline Transport Geospaces. Vestnik SGUGT (Siberian State University of Geosystems and Technologies), 26(1): 76–85 (in Russian). https://doi.org/10.33764/2411-1759-2021-26-1-76-85

Dolgopolov D.V., Melkiy V.A., Verkhoturov A.A. 2021. Geoinformation Support for Safe Operation of Pipeline Transport. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 332(12): 52–63 (in Russian). https://doi.org/10.18799/24131830/2021/12/3028

Dubrovsky A.V. 2022. Methodological Approaches to Modeling and Forecasting of Rational Use of Land Resources Using Geotechnologies. Vestnik SGUGT (Siberian State University of Geosystems and Technologies), 27(3): 145–156 (in Russian). https://doi.org/10.33764/2411-1759-2022-27-3-145-156

Zakharikhina L.V., Rashidov V.A., Anikin L.P. 2021. The Geochemistry and Potential Fertility of Volcanic Ash Discharged by Alaid and Ebeko Volcanoes, Kuril Islands. Journal of Volcanology and Seismology, 15(5): 333–348. (in Russian). https://doi.org/10.1134/S0742046321050079

Zverev A.T., Malinnikov V.A. 2011. Kosmicheskiy geoekologicheskiy monitoring severnykh territoriy Rossii [Space Geoecological Monitoring of the Northern Territories of Russia]. Izvestiya vysshikh uchebnykh zavedeniy. Geodesy and aerialphotography, 6: 68–73.

Zverev A.T., Malinnikov V.A., Savinykh V.P. 2011. Kosmicheskiy monitoring dinamiki lednikov Novoy Zemli i Zemli Frantsa-Iosifa [Space Monitoring of the Dynamics of Glaciers of Novaya Zemlya and Franz Josef Land]. Izvestiya vysshikh uchebnykh zavedeniy. Geodesy and aerialphotography, 5: 72–75.

Karpik A.P. 2004. Metodologicheskie i tekhnologicheskie osnovy geoinformatsionnogo obespecheniya territoriy [Methodological and Technological Foundations of Geoinformation Support of Territories]. Novosibirsk, Publ. SGGA, 259 p.

Karpik A.P. 2013. Osnovnyye printsipy formirovaniya geodezicheskogo informatsionnogo prostranstva [Basic Principles of Geodesic Information Space Formation]. Izvestiya vysshikh uchebnykh zavedeniy. Geodesy and aerialphotography, S4: 73–78. (in Russian).

Karpik A.P., Lisitsky D.V., Musikhin I.A. 2023. Development of Geospatial Activity in Russia: Strategic Directions and Priority Tasks. Geodesy and cartography, 84(12): 49–58 (in Russian). https://doi.org/10.22389/0016-7126-2023-1002-12-49-58

Lisetskii F.N., Goleusov P.V., Buryak Zh.A. 2024. Tolerable soils erosion losses and soil formation rates in the context of carbon balance regulation. Lomonosov Soil Science Journal, 79(3): 139–151 (in Russian). https://doi.org/10.55959/MSU0137-0944–17-2024-79-3-139-151

Mazarovich A.O., Sokolov S.Yu. 2022. The Risk of Destruction of Berenberg Volcano (Jan Mayen Island, Norwegian-Greenland Sea). Doklady Earth Sciences, 504(2): 368–371 (in Russian). https://doi.org/10.1134/S1028334X22060113

Melkiy V.A. 1999. Aerokosmicheskiy monitoring vulkanoopasnykh territoriy: teoriya i metody [Aerospace Monitoring of Volcano-Prone Areas: Theory and Methods]. Dis. … Doct. Tech. Sciences. Moscow, 337 p.

Melkiy V.A., Verkhoturov A.A. 2022. Current State of the Vegetation Cover of Golovnin Volcano by Space Survey Data (Kunashir Island, Kuril Islands). Regional Geosystems, 46(4): 555–573 (in Russian). https://doi.org/10.52575/2712-7443-2022-46-4-555-573

Melkiy V.A., Verkhoturov A.A., Bratkov V.V. 2024. Zoning of the Impact of the Ebeko Volcano (Kuril Islands) on Adjacent Lands by the Materials of Aerospace Surveys. Izvestiya vysshikh uchebnykh zavedeniy. Geodesy and aerialphotography, 68(1): 21–32 (in Russian). https://doi.org/10.30533/GiA-2024-002

Ryazanov S.S., Kulagina V.I. 2022. Comparative Accuracy Assessment of Digital Elevation Models (SRTM, ALOS WORLD 3D, ASTER GDEM, MERIT DEM) on the Example of Forest and Floodland Zones of the National Park “Nizhnyaya Kama”. Geosphere Research, 1: 107–117 (in Russian). https://doi.org/10.17223/25421379/22/8

Senyukov S.L., Nuzhdina I.N., Droznina S.Ya. 2008. Prostranstvenno-vremennoj analiz zemletrjasenij vulkana Kljuchevskoy za 1999-2007 gg. [Spatial and Temporal Analysis of the Klyuchevskaya Volcano Earthquakes in 1999-2007]. In: Geofizicheskiy monitoring i problemy sejsmicheskoy bezopasnosti Dal'nego Vostoka Rossii [Geophysical monitoring and problems of seismic safety in the Russian Far East]. Proceedings of the regional scientific and technical conference, Petropavlovsk-Kamchatsky, 11–17 November 2007. Obninsk, Publ. Edinaya geofizicheskaya sluzhba Rossiyskoy akademii nauk: 120–124.

Syvorotkin V.L. 2017. Volcanic Eruptions. Space and Time, 1(27): 196–213 (in Russian).

Khoroshilov V.S., Pavlovskaya O.G., Kobeleva N.N., Yambaev Kh.K. 2023. Mathematical Modeling of the Displacement’s Dynamics of Landslide Slopes Under the Conditions of Technogenic Impacts. Vestnik SGUGT (Siberian State University of Geosystems and Technologies), 28(1): 45–58 (in Russian). https://doi.org/10.33764/2411-1759-2023-28-1-45-58

Aveni S., Blackett M. 2022. The First Evaluation of the FY-3D/MERSI-2 Sensor’s Thermal Infrared Capabilities for Deriving Land Surface Temperature in Volcanic Regions: A Case Study of Mount Etna. International Journal of Remote Sensing, 43(8): 2777–2792. https://doi.org/10.1080/01431161.2022.2068360

Belousov A., Belousova M., Kotenko T., Auer A., Walter T.R. 2021. Mechanism of the Historical and the Ongoing Vulcanian Eruptions of Ebeko Volcano, Northern Kuriles. Bulletin of Volcanology, 83(1): 4. https://doi.org/10.1007/s00445-020-01426-z

Bisson K.M., Gassó S., Mahowald N., Wagner S., Koffman B., Carn S.A., Deutsch S., Gazel E., Kramer S., Krotkov N., Mitchell C., Pritchard M.E., Stamieszkin K., Wilson C. 2023. Observing Ocean Ecosystem Responses to Volcanic Ash. Remote Sensing of Environment, 296: 113749. https://doi.org/10.1016/j.rse.2023.113749

Burgisser A., Peccia A., Plank T., Moussallam Y. 2024. Numerical Simulations of the Latest Caldera-Forming Eruption of Okmok Volcano, Alaska. Bulletin of Volcanology, 86(9): 77. https://doi.org/10.1007/s00445-024-01765-1

Calvari S., Nunnari G. 2024. Reawakening of Voragine, the Oldest of Etna’s Summit Craters: Insights from a Recurrent Episodic Eruptive Behavior. Remote Sensing, 16(22): 4278. https://doi.org/10.3390/rs16224278

Campus A., Laiolo M., Massimetti F., Coppola D. 2022. The Transition from MODIS to VIIRS for Global Volcano Thermal Monitoring. Sensors, 22(5): 1713. https://doi.org/10.3390/s22051713

Chen J., Chen Y., Liu Z. 2021. Classification of Typical Tree Species in Laser Point Cloud Based on Deep Learning. Remote Sensing, 13(23): 4750. https://doi.org/10.3390/rs13234750

Chen Z., Jacob D.J., Nesser H., Sulprizio M.P., Lorente A., Varon D.J., Xiao Lu, Lu Shen, Qu Z., Penn E., Yu X. 2022. Methane Emissions from China: a High-Resolution Inversion of TROPOMI Satellite Observations. Atmospheric Chemistry and Physics, 22(16): 10809–10826. https://doi.org/10.5194/acp-22-10809-2022.

Fink J., Anderson S. 2023. Lessons Learned from the 1980–1986 Eruption of the Mount St. Helens Composite Lava Dome. Bulletin of Volcanology, 85(6): 35. https://doi.org/10.1007/s00445-023-01642-3

Genzano N., Marchese F., Plank S., Pergola N. 2023. Monitoring the Mauna Loa (Hawaii) Eruption of November–December 2022 from Space: Results from Goes-r, Sentinel-2 and Landsat-8/9 Observations. International Journal of Applied Earth Observation and Geoinformation, 122: 103388. https://doi.org/10.1016/j.jag.2023.103388

Khoroshilov V.S, Kobeleva N.N, Noskov M.F. 2022. Analysis of Possibilities to Use Predictive Mathematical Models for Studying the Dam Deformation State. Journal of Applied and Computational Mechanics, 8(2): 733–744. https://doi.org/10.22055/jacm.2022.38005.3129

Liu X, Lian X, Yang W, Wang F, Han Y, Zhang Y. 2022. Accuracy Assessment of a UAV Direct Georeferencing Method and Impact of the Configuration of Ground Control Points. Drones, 6(2): 30. https://doi.org/10.3390/drones6020030

Mannini S., Ruch J., Hazlett R.W., Downs D.T., Parcheta C.E., Lundblad S.P., Anderson J.L., Perry R., Oestreicher N. 2024. Tracking Magma Pathways and Surface Faulting in the Southwest Rift Zone and the Koaʻe Fault System (Kīlauea Volcano, Hawai‘i) Using Photogrammetry and Structural Observations. Bulletin of Volcanology, 86: 45. https://doi.org/10.1007/s00445-024-01735-7

Martí J., Becerril L., Rodríguez A. 2022. How Long-Term Hazard Assessment May Help to Anticipate Volcanic Eruptions: the Case of La Palma Eruption 2021 (Canary Islands). Journal of Volcanology and Geothermal Research, 431: 107699. https://doi.org/10.1016/j.jvolgeores.2022.107669

Ogburn S.E., Charlton D., Norgaard D., Wright H.M., Calder E.S., Lindsay J., Ewert J., Takarada S., Tajima Y. 2023. The Volcanic Hazard Maps Database: an initiative of the IAVCEI Commission on Volcanic Hazards and Risk. Journal of Applied Volcanology, 12: 2. https://doi.org/10.1186/s13617-022-00128-9

Peccia A., Moussallam Y., Plank T., DallaSanta K., Polvani L., Burgisser A., Larsen J., Schaefer J. 2023. A New Multi-Method Assessment of Stratospheric Sulfur Load from the Okmok II Caldera-Forming Eruption of 43 BCE. Geophysical Research Letters, 50(21): e2023GL103334. https://doi.org/10.1029/2023GL103334.

Ridolfi F., Almeev R.R., Ozerov A.Yu., Holtz F. 2023. Amp-TB2 Protocol and Its Application to Amphiboles from Recent, Historical and Pre-historical Eruptions of Bezymianny volcano, Kamchatka. Minerals, 13(11): 1394. https://doi.org/10.20944/preprints202309.2133.v1

Tesfaye W., Elias E., Warkineh B. Tekalign M., Abebe G. 2024. Modeling of Land Use and Land Cover Changes Using Google Earth Engine and Machine Learning Approach: Implications for Landscape Management. Environmental Systems Research, 13: 31. https://doi.org/10.1186/s40068-024-00366-3

Warwick R, Williams-Jones G, Kelman M, Witter J. 2022. A Scenario-Based Volcanic Hazard Assessment for the Mount Meager Volcanic Complex, British Columbia. Journal of Applied Volcanology, 11: 5. https://doi.org/ 10.1186/s13617-022-00114-1


Abstract views: 141

Share

Published

2025-03-28

How to Cite

Melkiy, V. A., Dolgopolov, D. V., & Verkhoturov, A. A. (2025). Monitoring the Geospace of Volcano Hazard Areas. Regional Geosystems, 49(1), 93-111. https://doi.org/10.52575/2712-7443-2025-49-1-93-111

Issue

Section

Earth Sciences