Methane Flows in the Troposphere: Geological and Anthropogenic Sources (According to Sentinel-5P TROPOMI Data)

Authors

  • Andrei P. Gusev F. Skorina Gomel State University

DOI:

https://doi.org/10.52575/2712-7443-2023-47-4-580-592

Keywords:

methane, Sentinel-5P, TROPOMI, correlation, seismic activity

Abstract

The purpose of the research is to study the relationship between methane flows (measured by remote sensing of the Earth) and geological and anthropogenic sources. The results of the Sentinel-5P TROPOMI survey (summer 2022) made it possible to obtain data on the methane concentrations in the troposphere over the regions of Eastern Europe, Southwest Asia, and Central Asia Increased methane concentrations (more than 1900 ppb) are characteristic of Qatar, Afghanistan, Kuwait, Turkmenistan, Pakistan and other countries located in the collision zone of lithospheric plates and possessing high oil and gas subsoil. A positive correlation between the average and median concentrations of tropospheric methane and seismic activity (correlation coefficients 0.756 and 0.786, respectively), natural gas reserves (0.745 and 0.759), cattle population (0.403 and 0.336), population density (0.322 and 0.447) was established. The average methane content over the cities positively correlates with seismic activity (0.557) and population density (0.355).

Author Biography

Andrei P. Gusev, F. Skorina Gomel State University

Candidate of Geological and Mineralogical Sciences, Associate Professor, Head of the Department of Geology and Geography of Francisk Skorina Gomel State University,
Gomel, Belarus

References

Власов С.В., Коновалова О.В., Чудовская И.В., Власова И.В., Колотилова Н.Н., Снакин В.В. 2021. Метан в атмосфере, метанотрофы и развитие нефтегазовой промышленности. М., МАКС Пресс, 140 с. https://doi.org/10.29003/m1986.978-5-317-06580-5.

Гаркуша Д.Н., Федоров Ю.А. 2019. Глобальная эмиссия метана геологическими источниками. Международный научно-исследовательский журнал, 3(81): 37–51. https://doi.org/10.23670/IRJ.2019.81.3.006.

Гречушникова М.Г., Школьный Д.И. 2019. Оценки эмиссии метана водохранилищами России. Водное хозяйство России. 2: 58–71.

Елисеев А.В. 2018. Глобальный цикл метана: обзор. Фундаментальная и прикладная климатология. 1: 52–70. https://doi.org/10.21513/2410-8758-2018-1-52-70.

Киселев А.А., Кароль И.Л. 2019. С метаном по жизни. Санкт-Петербург, Главная геофизическая обсерватория им. А.И. Воейкова, 73 с.

Кулачкова С.А., Коваленко А.В. 2021. Городские почвы одного из районов новой Москвы как источники поступления метана и углекислого газа в атмосферу. Вестник Московского университета. Серия 17. Почвоведение, 4: 31–46.

Метан и климатические изменения: научные проблемы и технологические аспекты. 2022. М., РАН, 388 с.

Семенов С.М., Говор И.Л., Уварова Н.Е. 2018. Роль метана в современном изменении климата. М., НИИПЭ, 106 с.

Степаненко В.М., Гречушникова М.Г., Репина И.А. 2020. Численное моделирование эмиссии метана из водохранилищ. Фундаментальная и прикладная климатология, 2: 76–99. https://doi.org/10.21513/2410-8758-2020-2-76-99.

Сывороткин В.Л. 2002. Глубинная дегазация Земли и глобальные катастрофы. М., Геоинформцентр, 250 с.

Шакиров Р.Б. 2018. Газогеохимические поля окраинных полей Восточной Азии. М., ГЕОС, 341 с.

Шевелева Н.А. 2020. Управление выбросами метана в нефтегазовом секторе. Научный журнал Российского газового общества, 3(26): 48–59.

Baray S., Jacob D.J., Maasakkers J.D., Sheng J.-X., Sulprizio M.P., Jones D.B.A., Bloom A.A., McLaren R. 2021. Estimating 2010–2015 Anthropogenic and Natural Methane Emissions in Canada Using ECCC Surface and GOSAT Satellite Observations. Atmospheric Chemistry and Physics, 21: 18101–18121. https://doi.org/10.5194/acp-21-18101-2021.

Chen Z., Jacob D.J., Nesser H., Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Elise Penn, and Xueying Yu. 2022. Methane Emissions from China: a High-Resolution Inversion of TROPOMI Satellite Observations. Atmospheric Chemistry and Physics, 22: 10809–10826. https://doi.org/10.5194/acp-22-10809-2022.

Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone 2009. Geological Society. Special Publications, 311: 368.

Hu H., Landgraf J., Detmers R., Borsdorff T., de Brugh J.A., Aben I., Butz A., Hasekamp O. 2018. Toward Global Mapping of Methane with TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophysical Research Letters, 45: 3682–3689. https://doi.org/10.1002/2018GL077259

Lorente A., Borsdorffi T., Butz A., Hasekamp O., de Brugh J.A., Schneider A., Wu L., Hase F., Kivi R., Wunch D., Pollard D.F., Shiomi K., Deutscher N.M., Velazco V.A., Roehl C.M., Wennberg P.O., Warneke T., Landgraf J. 2021. Methane Retrieved from TROPOMI: Improvement of the Data Product and Validation of the First 2 Years of Measurements. Atmospheric Measurement Techniques, 14: 665–684.

Lorente A., Borsdorff T., Martinez-Velarte M.C., Butz A., Hasekamp O.P., Wu L., Landgraf J. 2022. Evaluation of the Methane Full-Physics Retrieval Applied to TROPOMI Ocean Sun Glint Measurements. Atmospheric Measurement Techniques, 15: 6585–6603. https://doi.org/10.5194/amt-15-6585-2022

Lorente A., Borsdorff T., Martinez-Velarte M.C., Landgraf J. 2023. Accounting for Surface Reflectance Spectral Features in TROPOMI Methane Retrievals. Atmospheric Measurement Techniques, 16: 1597–1608.

Lu X., Jacob D.J., Wang H., Maasakkers J.D., Zhang Y., Scarpelli T.R., Shen L., Qu Z., Sulprizio M.P., Nesser H., Bloom A.A., Ma S., Worden J.R., Fan S., Parker R.J., Boesch H., Gautam R., Gordon D., Moran M.D., Reuland F., Villasana C.A.O., Andrews A. 2022. Methane Emissions in the United States, Canada, and Mexico: Evaluation of National Methane Emission Inventories and 2010–2017 Sectoral Trends by Inverse Analysis of in Situ (GLOBALVIEWplus CH4 ObsPack) and Satellite (GOSAT) Atmospheric Observations. Atmospheric Chemistry and Physics, 22: 395–418. https://doi.org/10.5194/acp-22-395-2022

Lunt M.F., Palmer P.I., Feng L., Taylor C.M., Boesch H., Parker R.J. 2019. An Increase in Methane Emissions from Tropical Africa between 2010 and 2016 Inferred from Satellite Data. Atmospheric Chemistry and Physics, 19(23): 14721–14740. https://doi.org/10.5194/acp-19-14721-2019

Maasakkers J.D., Jacob D.J., Sulprizio M.P., Scarpelli T.R., Nesser H., Sheng J.-X., Zhang Y., Hersher M., Bloom A.A., Bowman K.W., Worden J.R., Janssens-Maenhout G., Parker R.J. 2019. Global Distribution of Methane Emissions, Emission Trends, and OH Concentrations and Trends Inferred from an Inversion of GOSAT Satellite Data for 2010–2015. Atmospheric Chemistry and Physics, 19: 7859–7881. https://doi.org/10.5194/acp-19-7859-2019

Maasakkers J.D., Varon D.J., Elfarsdуttir A., McKeever J., Jervis D., Mahapatra G., Pandey S., Lorente A., Borsdorff T., Foorthuis L.R., Schuit B.J., Tol P., van Kempen T.A., van Hees R., Aben I. 2022. Using Satellites to Uncover Large Methane Emissions from landfills. Science advances, 8: 1–8.

Monster J., Kjeldsen P., Scheutz C. 2019. Methodologies for Measuring Fugitive Methane Emissions from Landfills: A Review. Waste Management, 87: 835–859.

Plant G., Kort E.A., Murray L.T., Maasakkers J.D., Aben I. 2022. Evaluating Urban Methane Emissions from Space Using TROPOMI Methane and Carbon Monoxide Observations. Remote Sensing of Environment, 268: 112756. https://doi.org/10.1016/j.rse.2021.112756

Shen L., Gautam R., Omara M., Zavala-Araiza D., Maasakkers J.D., Scarpelli T.R., Lorente A., Lyon D., Sheng J., Varon D.J., Nesser H., Qu Z., Lu X., Sulprizio M.P., Hamburg S.P., Jacob D.J. 2022. Satellite Quantification of Oil and Natural Gas Methane Emissions in the US and Canada Including Contributions from Individual Basins. Atmospheric Chemistry and Physics, 22: 11203–11215. https://doi.org/10.5194/acp-22-11203-2022

Schneising O., Buchwitz M., Reuter M., Vanselow S., Bovensmann H., Burrows J.P. 2020. Remote Sensing of Methane Leakage from Natural Gas and Petroleum Systems Revisited. Atmospheric Chemistry and Physics, 20: 9169–9182.


Abstract views: 79

Share

Published

2023-12-29

How to Cite

Gusev, A. P. (2023). Methane Flows in the Troposphere: Geological and Anthropogenic Sources (According to Sentinel-5P TROPOMI Data). Regional Geosystems, 47(4), 580-592. https://doi.org/10.52575/2712-7443-2023-47-4-580-592

Issue

Section

Earth Sciences