Оценка спектрально-отражательных свойств эродированных агропочв Республики Татарстан
DOI:
https://doi.org/10.52575/2712-7443-2025-49-3-517-532Ключевые слова:
эрозия почв, пашня, дистанционное зондирование Земли, Landsat, GEE, открытая почва, спектральные индексыАннотация
Водная эрозия почв – наиболее масштабная форма деградации пахотных земель в России, однако оперативная информация о ее распространении фрагментарна, устарела и труднодоступна. Настоящее исследование восполняет этот пробел, интегрируя многовременные снимки Landsat 4/5 (30 м; 1985–1995 гг.) в среде Google Earth Engine для получения бесшовного медианного композита поверхности открытой почвы Республики Татарстан – одного из наиболее интенсивно возделываемых и эрозионно-опасных регионов страны. После маскирования облаков, теней и растительности (NDVI ≤ 0,2) и применения маски пашни композит был дополнен набором почвенно-ориентированных спектральных индексов (SAVI, BITM, BIXS, BaI, NDSoilI, DBSI, NSDS). Зональная статистика рассчитывалась для 63,5 тыс. га почв, очерченных по картам крупномасштабного почвенно-эрозионного обследования и для 416 точно геолокализованных участков с эродированными почвами, выявленных на снимках Maxar. Однофакторный дисперсионный анализ (ANOVA) на выборке 694 000 наблюдений показал статистически значимые различия (p ≪ 0,0001) между черноземами, темно-серыми, серыми, светло-серыми лесными и дерново-подзолистыми почвами; наибольшее межгрупповое разделение обеспечили красный и ближний инфракрасный каналы и производные от них индексы SAVI и BIXS. По сравнению со средневзвешенными отражательными способностями родительских почв (включающих как ненарушенные, так и эродированные области) эродированные пятна демонстрируют систематическое увеличение отражательной способности на 11–19 %, с пиком в БИК и сохраняя при этом специфическую для почвы спектральную упорядоченность. Полученные результаты свидетельствуют о том, что надежное выделение эрозионно нарушенных пикселей возможно лишь при предваренной стратификации по генетическому типу почв; игнорирование врожденных цветовых контрастов может привести к ошибочной классификации естественно осветленных полнопрофильных почв как эродированных аналогов более гумусированных черноземов. Десятилетний композит открытой почвы является устойчивой, независимой от растительности базой, фиксирующей как пространственную, так и статистическую вариабельность пахотных почв и предоставляющей переносимые пороговые значения для автоматизированного картографирования эрозии в региональном масштабе. Интеграция данной методики в национальную систему мониторинга земель значительно повысит оперативность, детализацию и научную обоснованность планирования мероприятий по охране почв в ключевых сельскохозяйственных зонах России.
Благодарности: Исследование выполнено за счет гранта Республики Татарстан для поддержки научных исследований, проводимых молодыми учеными и молодежными научными коллективами в Республике Татарстан (контракт № 08-24/МГ от 25.12.2024 г.).
Скачивания
Библиографические ссылки
Список источников
Атлас Республики Татарстан. 2017. Отв. ред. И.Ю. Каменская. М., ПКО «Картография», 215 с. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2023 году». 2024a. М. Электронный ресурс. URL: https://2023.ecology-gosdoklad.ru/ (дата обращения: 04.05.2025).
Государственный доклад «О состоянии природных ресурсов и об охране окружающей среды Республики Татарстан в 2023 году». 2024б. Казань. Электронный ресурс. URL: https://eco.tatarstan.ru/gosdoklad-2023.htm (дата обращения: 04.05.2025).
Единый государственный реестр почвенных ресурсов России. Версия 1.0. 2019. Москва. Электронный ресурс. URL: https://egrpr.esoil.ru/index.htm (дата обращения: 04.05.2025).
Караванова Е.И. 2003. Оптические свойства почв и их природа. М., Изд-во МГУ, 151 с.
Список литературы
Аввакумова А.О. 2020. Математическое моделирование факторов эрозии почв на пахотных землях (на примере территории Республики Татарстан). Региональные геосистемы, 44(1): 5–15. https://doi.org/10.18413/2712-7443-2020-44-1-5-15
Брыжко И.В., Столбов И.А., Брыжко В.Г. 2025. Картографирование эрозионно опасных земель Пермского края. Региональные геосистемы, 49(1): 40–52. https://doi.org/10.52575/2712-7443-2025- 49-1-40-52
Горбачева Е.Н. 2011. Автоматизированное дешифрирование почв, подверженных водно- эрозионным процессам. Почвоведение и агрохимия, 1(46): 46–54.
Гусев А.П., Козюлев И.И., Шаврин И.А. 2020. Использование спектральных индексов для оценки эродированности почв в природно-антропогенных ландшафтах Беларуси. Российский журнал прикладной экологии, 2(22): 48–52.
Иванов М.А., Гафуров А.М. 2025. Анализ изменений землепользования в Среднем Поволжье по данным Landsat для оценки потенциала возврата заброшенных пахотных земель в сельскохозяйственный оборот. Современные проблемы дистанционного зондирования Земли из космоса, 22(2): 186–201. https://doi.org/10.21046/2070-7401-2025-22-2-186-201
Лисецкий Ф.Н., Марциневская Л.В. 2009. Оценка развития линейной эрозии и эродированности почв по результатам аэрофотосъемки. Землеустройство, кадастр и мониторинг земель, 10(58): 39–43.
Родионова Н.В., Кудряшова С.Я., Чумбаев А.С. 2022. Оценка некоторых параметров верхнего слоя почвы по радарным и оптическим данным спутников Sentinel 1/2 на примере Новосибирской области. Исследования Земли из космоса, 1: 68–79. https://doi.org/10.31857/S0205961422010067
Шаповалов Д.А., Ведешин Л.А., Евстратова Л.Г., Антошкин А.А. 2023. Методы использования мультиспектральных снимков при экологическом мониторинге мелиорированных земель. Современные проблемы дистанционного зондирования Земли из космоса, 20(4): 187–201. https://doi.org/10.21046/2070-7401-2023-20-4-187-201
Bag R., Mondal I., Dehbozorgi M., Bank S.P., Das D.N., Bandyopadhyay J., Pham Q.B., Al-Quraishi A.M.F., Nguyen X.C. 2022. Modelling and Mapping of Soil Erosion Susceptibility Using Machine Learning in a Tropical Hot Sub-Humid Environment. Journal of Cleaner Production, 364: 132428. https://doi.org/10.1016/j.jclepro.2022.132428
Batista P.V., Davies J., Silva M.L., Quinton J.N. 2019. On the Evaluation of Soil Erosion Models: Are We Doing Enough? Earth-Science Reviews, 197: 102898. https://doi.org/10.1016/j.earscirev.2019.102898
Borrelli P., Ballabio C., Yang J.E., Robinson D.A., Panagos P. 2022. GloSEM: High-Resolution Global Estimates of Present and Future Soil Displacement in Croplands by Water Erosion. Scientific Data, 9: 406. https://doi.org/10.1038/s41597-022-01489-x
Buryak Zh.A., Ukrainsky P.A., Gusarov A.V., Lukin S.V., Beylich A.A. 2023. Geomorphic Factors Influencing the Spatial Distribution of Eroded Chernozems in Automated Digital Soil Erosion Mapping. Geomorphology, 439: 108863. https://doi.org/10.1016/j.geomorph.2023.108863
Castaldi F., Chabrillat S., Don A., Van Wesemael B. 2019. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sensing, 11(18): 2121. https://doi.org/10.3390/rs11182121
Fernández C., Fernández-Alonso J.M., Vega J.A., Fontúrbel T., Llorens R., Sobrino J.A. 2021. Exploring the Use of Spectral Indices to Assess Alterations in Soil Properties in Pine Stands Affected by Crown Fire in Spain. Fire Ecology, 17(1): 2. https://doi.org/10.1186/s42408-020-00089-7
Gallo B.C., Demattê J.A.M., Rizzo R., Safanelli J.L., Mendes W.D.S., Lepsch I.F., Sato M.V., Romero D.J., Lacerda M.P.C. 2018. Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology. Remote Sensing, 10(10): 1571. https://doi.org/10.3390/rs10101571
Ivanov A.L., Savin I.Y., Stolbovoy V.S., Avetyan S.A., Shishkonakova E.A., Kashtanov A.N. 2020. Map of Anthropogenic Soil Erosion of Russia. Doklady Earth Sciences, 493: 654–657. https://doi.org/10.1134/S1028334X20080097
Koroleva P.V., Rukhovich D.I., Rukhovich A.D., Rukhovich D.D., Kulyanitsa A.L., Trubnikov A.V., Kalinina N.V., Simakova M.S. 2017. Location of Bare Soil Surface and Soil Line on the RED–NIR Spectral Plane. Eurasian Soil Science, 50: 1375–1385. https://doi.org/10.1134/S1064229317100040
Maltsev K.A., Yermolaev O.P. 2020. Assessment of Soil Loss by Water Erosion in Small River Basins in Russia. Catena, 195: 104726. https://doi.org/10.1016/j.catena.2020.104726
Mathieu R., Pouget M., Cervelle B., Escadafal R. 1998. Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sensing of Environment, 66(1): 17–28. https://doi.org/10.1016/S0034-4257(98)00030-3
Montandon L.M., Small E.E. 2008. The Impact of Soil Reflectance on the Quantification of the Green Vegetation Fraction from NDVI. Remote Sensing of Environment, 112(4): 1835–1845. https://doi.org/10.1016/j.rse.2007.09.007
Montero D., Aybar C., Mahecha M.D., Martinuzzi F., Söchting M., Wieneke S. 2023. A Standardized Catalogue of Spectral Indices to Advance the Use of Remote Sensing in Earth System Research. Scientific Data, 10(1): 197. https://doi.org/10.1038/s41597-023-02096-0
Nascimento C.M., De Sousa Mendes W., Quiñonez Silvero N.E., Poppiel R.R., Sayão V.M., Dotto A.C., Valadares Dos Santos N., Accorsi Amorim M.T., Demattê J.A.M. 2021. Soil Degradation Index Developed by Multitemporal Remote Sensing Images, Climate Variables, Terrain and Soil Attributes. Journal of Environmental Management, 277: 111316. https://doi.org/10.1016/j.jenvman.2020.111316
Prudnikova E.Y., Savin I.Y. 2015. Satellite Assessment of Dehumification of Arable Soils in Saratov Region. Eurasian Soil Science, 48(5): 533–539. https://doi.org/10.1134/S1064229315050075
Sahour H., Gholami V., Vazifedan M., Saeedi S. 2021. Machine Learning Applications for Water- Induced Soil Erosion Modeling and Mapping. Soil and Tillage Research, 211: 105032. https://doi.org/10.1016/j.still.2021.105032
Savin I., Prudnikova E., Chendev Y., Bek A., Kucher D., Dokukin P. 2021. Detection of Changes in Arable Chernozemic Soil Health Based on Landsat TM Archive Data. Remote Sensing, 13(12): 2411. https://doi.org/10.3390/rs13122411
Senanayake S., Pradhan B., Alamri A., Park H.J. 2022. A New Application of Deep Neural Network (LSTM) and RUSLE Models in Soil Erosion Prediction. Science of the Total Environment, 845: 157220. https://doi.org/10.1016/j.scitotenv.2022.157220
Tan Z., Leung L.R., Li H.Y., Cohen S. 2022. Representing Global Soil Erosion and Sediment Flux in Earth System Models. Journal of Advances in Modeling Earth Systems, 14(1): e2021MS002756. https://doi.org/10.1029/2021MS002756
Wang J., Zhen J., Hu W., Chen S., Lizaga I., Zeraatpisheh M., Yang X. 2023. Remote Sensing of Soil Degradation: Progress and Perspective. International Soil and Water Conservation Research, 11(3): 429–454. https://doi.org/10.1016/j.iswcr.2023.03.002
Yermolaev O.P. 2017. Geoinformation Mapping of Soil Erosion in the Middle Volga Region. Eurasian Soil Science, 50: 118–131. https://doi.org/10.1134/S1064229317010070
References
Avvakumova A.O. 2020. Mathematical Modeling of Soil Erosion Factors on Agricultural Lands (on the Territory of the Republic of Tatarstan). Regional Geosystems, 44(1): 5–15 (in Russian). https://doi.org/10.18413/2712-7443-2020-44-1-5-15
Bryzhko I.V., Stolbov I.A., Bryzhko V.G. 2025. Mapping of Erosion Hazard Lands of the Perm Region. Regional Geosystems, 49(1): 40–52 (in Russian). https://doi.org/10.52575/2712-7443-2025-49-1-40-52 Gorbachova E.N. 2011. Technology of Automated Interpretation of Eroded Soils. Soil Science and Agrochemistry, 1(46): 46–54 (in Russian).
Gusev A.P., Kozulev I.I., Shavrin I.A. 2020. The Use of Spectral Indices for Assessing Soil Erosion in Natural and Anthropogenic Landscapes of Belarus. Russian Journal of Applied Ecology, 2(22): 48– 52 (in Russian).
Ivanov M.A., Gafurov A.M. 2025. Analysis of Land Use Changes in the Middle Volga Region Based on Landsat Data to Assess the Potential of Returning Abandoned Cropland into Use. Current Problems in Remote Sensing of the Earth from Space, 22(2): 186–201 (in Russian). https://doi.org/10.21046/2070-7401-2025-22-2-186-201
Lisetskii F.N., Marcinevskaya L.V. 2009. Assessment of Development of Linear Erosion and Soil Erosion as a Result of Aerial Photo Shooting. Land Management, Monitoring and Cadastre, 10(58): 39–43 (in Russian).
Rodionova N.V., Kudryashova S.Ya., Chumbaev A.S. 2022. Estimation of Some Parameters of the Upper Soil Layer by Radar and Optical Data of Sentinel 1/2 Satellites in Conditions of the Novosibirsk Region. Issledovanie Zemli iz Kosmosa, 1: 68–79 (in Russian). https://doi.org/10.31857/S0205961422010067
Shapovalov D.A., Vedeshin L.A., Evstratova L.G., Antoshkin A.A. 2023. Methods of Using Multispectral Images in Ecological Monitoring of Reclaimed Lands. Current Problems in Remote Sensing of the Earth from Space, 20(4): 187–201 (in Russian). https://doi.org/10.21046/2070-7401-2023-20-4-187-201
Bag R., Mondal I., Dehbozorgi M., Bank S.P., Das D.N., Bandyopadhyay J., Pham Q.B., Al-Quraishi A.M.F., Nguyen X.C. 2022. Modelling and Mapping of Soil Erosion Susceptibility Using Machine Learning in a Tropical Hot Sub-Humid Environment. Journal of Cleaner Production, 364: 132428. https://doi.org/10.1016/j.jclepro.2022.132428
Batista P.V., Davies J., Silva M.L., Quinton J.N. 2019. On the Evaluation of Soil Erosion Models: Are We Doing Enough? Earth-Science Reviews, 197: 102898. https://doi.org/10.1016/j.earscirev.2019.102898
Borrelli P., Ballabio C., Yang J.E., Robinson D.A., Panagos P. 2022. GloSEM: High-Resolution Global Estimates of Present and Future Soil Displacement in Croplands by Water Erosion. Scientific Data, 9: 406. https://doi.org/10.1038/s41597-022-01489-x
Buryak Zh.A., Ukrainsky P.A., Gusarov A.V., Lukin S.V., Beylich A.A. 2023. Geomorphic Factors Influencing the Spatial Distribution of Eroded Chernozems in Automated Digital Soil Erosion Mapping. Geomorphology, 439: 108863. https://doi.org/10.1016/j.geomorph.2023.108863
Castaldi F., Chabrillat S., Don A., Van Wesemael B. 2019. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sensing, 11(18): 2121. https://doi.org/10.3390/rs11182121
Fernández C., Fernández-Alonso J.M., Vega J.A., Fontúrbel T., Llorens R., Sobrino J.A. 2021. Exploring the Use of Spectral Indices to Assess Alterations in Soil Properties in Pine Stands Affected by Crown Fire in Spain. Fire Ecology, 17(1): 2. https://doi.org/10.1186/s42408-020-00089-7
Gallo B.C., Demattê J.A.M., Rizzo R., Safanelli J.L., Mendes W.D.S., Lepsch I.F., Sato M.V., Romero D.J., Lacerda M.P.C. 2018. Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology. Remote Sensing, 10(10): 1571. https://doi.org/10.3390/rs10101571
Ivanov A.L., Savin I.Y., Stolbovoy V.S., Avetyan S.A., Shishkonakova E.A., Kashtanov A.N. 2020. Map of Anthropogenic Soil Erosion of Russia. Doklady Earth Sciences, 493: 654–657. https://doi.org/10.1134/S1028334X20080097
Koroleva P.V., Rukhovich D.I., Rukhovich A.D., Rukhovich D.D., Kulyanitsa A.L., Trubnikov A.V., Kalinina N.V., Simakova M.S. 2017. Location of Bare Soil Surface and Soil Line on the RED–NIR Spectral Plane. Eurasian Soil Science, 50: 1375–1385. https://doi.org/10.1134/S1064229317100040
Maltsev K.A., Yermolaev O.P. 2020. Assessment of Soil Loss by Water Erosion in Small River Basins in Russia. Catena, 195: 104726. https://doi.org/10.1016/j.catena.2020.104726
Mathieu R., Pouget M., Cervelle B., Escadafal R. 1998. Relationships between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sensing of Environment, 66(1): 17–28. https://doi.org/10.1016/S0034-4257(98)00030-3
Montandon L.M., Small E.E. 2008. The Impact of Soil Reflectance on the Quantification of the Green Vegetation Fraction from NDVI. Remote Sensing of Environment, 112(4): 1835–1845. https://doi.org/10.1016/j.rse.2007.09.007
Montero D., Aybar C., Mahecha M.D., Martinuzzi F., Söchting M., Wieneke S. 2023. A Standardized Catalogue of Spectral Indices to Advance the Use of Remote Sensing in Earth System Research. Scientific Data, 10(1): 197. https://doi.org/10.1038/s41597-023-02096-0
Nascimento C.M., De Sousa Mendes W., Quiñonez Silvero N.E., Poppiel R.R., Sayão V.M., Dotto A.C., Valadares Dos Santos N., Accorsi Amorim M.T., Demattê J.A.M. 2021. Soil Degradation Index Developed by Multitemporal Remote Sensing Images, Climate Variables, Terrain and Soil Attributes. Journal of Environmental Management, 277: 111316. https://doi.org/10.1016/j.jenvman.2020.111316
Prudnikova E.Y., Savin I.Y. 2015. Satellite Assessment of Dehumification of Arable Soils in Saratov Region. Eurasian Soil Science, 48(5): 533–539. https://doi.org/10.1134/S1064229315050075
Sahour H., Gholami V., Vazifedan M., Saeedi S. 2021. Machine Learning Applications for Water- Induced Soil Erosion Modeling and Mapping. Soil and Tillage Research, 211: 105032. https://doi.org/10.1016/j.still.2021.105032
Savin I., Prudnikova E., Chendev Y., Bek A., Kucher D., Dokukin P. 2021. Detection of Changes in Arable Chernozemic Soil Health Based on Landsat TM Archive Data. Remote Sensing, 13(12): 2411. https://doi.org/10.3390/rs13122411
Senanayake S., Pradhan B., Alamri A., Park H.J. 2022. A New Application of Deep Neural Network (LSTM) and RUSLE Models in Soil Erosion Prediction. Science of the Total Environment, 845: 157220. https://doi.org/10.1016/j.scitotenv.2022.157220
Tan Z., Leung L.R., Li H.Y., Cohen S. 2022. Representing Global Soil Erosion and Sediment Flux in Earth System Models. Journal of Advances in Modeling Earth Systems, 14(1): e2021MS002756. https://doi.org/10.1029/2021MS002756
Wang J., Zhen J., Hu W., Chen S., Lizaga I., Zeraatpisheh M., Yang X. 2023. Remote Sensing of Soil Degradation: Progress and Perspective. International Soil and Water Conservation Research, 11(3): 429–454. https://doi.org/10.1016/j.iswcr.2023.03.002
Yermolaev O.P. 2017. Geoinformation Mapping of Soil Erosion in the Middle Volga Region. Eurasian Soil Science, 50: 118–131. https://doi.org/10.1134/S1064229317010070
Просмотров аннотации: 111
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2025 Региональные геосистемы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
