Soils of Agricultural Terraces on Carbonate Rocks of the Eastern Caucasus
DOI:
https://doi.org/10.52575/2712-7443-2022-46-1-5-13Keywords:
Eastern Caucasus, agricultural terraces, limestone, slope exposure, chemical and biological properties of terracesAbstract
We carried out the study of soil properties of agricultural terraces on carbonate rocks in the mountainous zone of the Eastern Caucasus (Republic of Dagestan, Russian Federation). We compared soils on limestone and marl on the slopes of the northern and southern exposures, in different geomorphological conditions (watersheds and hollows). The soils on carbonate rocks have high potential fertility that caused their long-term agricultural development. In result of the long-term plowing is the terraces with a horizontal surface arising, which changed the angle of incidence of sunlight. This led to the arrival of solar radiation on the soils of the slopes of the southern exposure decreased, and the soils of the terraces of the northern slope, on the contrary, began to receive more solar radiation. As a result, there was a kind of convergence of soil properties of slopes of different exposures. This was most noticeable in such chemical indicators as the content of organic carbon and the of cation exchange capacity. There was also a significant convergence of the biological properties of the soils of the northern and southern exposures after terracing. At the same time, the change in the radiation balance did not affect some chemical properties of agricultural terraces: the most clearly noticeable differences are in the content of mobile forms of phosphates (the content of P2O5 in soils on the northern slope exceeds was twice as high). Also, the alkalinity was noticeably higher in the soils on the slopes of the southern exposure. At the same time, we found that in a number of cases, the influence of agricultural technology, as well as modern cattle grazing on the microbiological indicators of the upper horizon of terraced soil was higher than influence of slope exposure.
Acknowledgements
Chemical and microbiological analyses were carried out with the financial support of RFBR grant No. 19-29-05205 mk. Field work in 2019 was carried out within the framework of State Task No. 0191-2019-0046.
Downloads
References
Акаев Б.А., Атаев З.В., Гаджиев Б.С., Гаджиева З.Х., Ганиев М.И., Гасангусейнов М.Г., Залибеков З.М., Исмаилов Ш.И., Каспаров С.А., Лепехина А.А., Мусаев В.О., Рабаданов Р.М., Соболев Д.В., Сурмачевский В.И., Тагиров Б.Д., Эльдаров Э.М. 1996. Физическая география Дагестана. М., Школа, 396 с.
Аринушкина Е.В. 1970. Руководство по химическому анализу почв. М., Изд. МГУ, 490 с.
Воробьева Л.А. 1998. Химический анализ почв. М., Изд-во МГУ, 272 с.
Практикум по почвоведению. 1973. Под ред. И.С. Кауричева. М., Колос, 279 с.
Агларов М.А. 1964. Техника сооружения террасных полей и вопросы эволюции форм собственности. Ученые записки. Том XIII. Серия историческая: 177–193.
Амирханов Х.А. 1983. Начало земледелия в Дагестане. Природа, 2: 58–59.
Баламирзоев М.А., Мирзоев Э.Р., Аджиев А.М., Муфараджев К.Г. 2008. Почвы Дагестана. Экологические аспекты их рационального использования. Махачкала, Дагестанское книжное издательство, 335 с.
Борисов А.В., Каширская Н.Н., Ельцов М.В., Пинской В.Н., Плеханова Л.Н., Идрисов И.А. 2021. Почвы древних земледельческих террас Восточного Кавказа. Почвоведение, 5: 542–557. DOI: 10.31857/S0032180X2105004X.
Борисов А.В., Коробов Д.С., Идрисов И.А., Калинин П.И. 2018. Почвы земледельческих террас с подпорными стенками в горном Дагестане. Почвоведение, 1: 26–36. DOI: 10.7868/S0032180X18010033.
Владыченский А.С. 1998. Особенности горного почвообразования. М., Наука, 189 с.
Залибеков З.Г. 1982. Классификация и диагностика почв Дагестана. Махачкала, Дагестанский филиал АН СССР, 84 с.
Залибеков З.Г. 2010. Почвы Дагестана. Махачкала, Прикаспийский институт биологических ресурсов, 241 с.
Исмагилов Р.Р., Абдулвалеев Р.Р. 2015. Пространственная изменчивость плодородия почвы на рельефе. Современные проблемы науки и образования, 1–2: 286.
Кондратьев К.Я., Пивоварова З.И., Федоров М.П. 1978. Радиационный режим наклонных поверхностей. Л., Гидрометеоиздат, 215 с.
Anderson J.P.E., Domsch K.H. 1978. Physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10 (3): 215–221. DOI: 10.1016/0038-0717(78)90099-8.
Borisov A.V., Chernysheva E.V., Korobov D.S. 2016. Buried Paleoanthrosols of the Bronze Age agricultural terraces in the Kislovodsk basin (Northern Caucasus, Russia). Quaternary International, 418: 28–36. DOI: 10.1016/j.quaint.2015.08.054.
Kandeler E., Gerber H. 1988. Short-term assay of urease activity using colorimetric determination of ammonium. Biology and fertility of soils, 6: 68–72. DOI: 10.1007/BF00257924.
Lisetskii F., Stolba V., Marininа. O. 2015. Indicators of agricultural soil genesis under varying conditions of land use, Steppe Crimea. Geoderma, 239–240: 304–316. DOI: 10.1016/j.geoderma.2014.11.006.
Ryabogina N., Borisov A, Idrisov I., Bakushev M. 2019. Holocene environmental history and populating of mountainous Dagestan (Eastern Caucasus, Russia). Quaternary International, 516: 111–126. DOI: 10.1016/j.quaint.2018.06.020.
Hall Sh.J., Trujillo J., Nakase D., Strawhacker C., Kruse-Peeples M., Schaafsma H., Briggs J. 2013. Legacies of Prehistoric Agricultural Practices Within Plant and Soil Properties Across an Arid Ecosystem. Ecosystems, 16: 1273–1293. DOI: 10.1007/s10021-013-9681-0.
Abstract views: 139
Share
Published
How to Cite
Issue
Section
Copyright (c) 2022 REGIONAL GEOSYSTEMS
This work is licensed under a Creative Commons Attribution 4.0 International License.