Long-term Dynamics of the Vegetation Index for Abandoned Farmlands in the Central Chernozem Region of Russia

Authors

  • Edgar A. Terekhin Belgorod National Research University

DOI:

https://doi.org/10.52575/2712-7443-2021-45-4-505-515

Keywords:

abandoned agricultural lands, long-term dynamics, vegetation indices, reforestation, Central Chernozem Region, remote sensing data

Abstract

Analysis of long-term changes in vegetation is one of the key tasks in assessing the state of abandoned lands, especially in regions of active agricultural use. Estimating the satellite-derived time-series of vegetation indices is one of the options for solving this problem. The article analyzes NDVI vegetation index dynamic of abandoned lands in the Central Chernozem Region of Russia in the period 2000–2018. The research was carried out on abandoned farmlands with various types of forests. The positive dynamics of the vegetation index for the abandoned lands with deciduous tree species was revealed in all parts of the Region. At the same time, the trend significance is different in the oblasts of the region. For the abandoned lands with deciduous trees, statistically significant trends were established in the areas located closest to the forest zone. The abandoned farmlands with coniferous and mixed forests are characterized by statistically significant, positive dynamics in most of the studied oblasts. The abandoned agrarian lands with coniferous forests are characterized by the highest intensity of the increase in the vegetation index values during the study period. The slope coefficient of the vegetation index trend differs significantly between the oblasts of the region for both abandoned lands with deciduous and coniferous species. Taking into account the high correlation between NDVI and the forest cover, the revealed changes characterize the reforestation on these lands.

Downloads

Download data is not yet available.

Author Biography

Edgar A. Terekhin, Belgorod National Research University

PhD in Geography, Senior Researcher, Department of Geoinformatics, Federal Regional Center for Aerospace and Ground Monitoring of Objects and Natural Resources, Associate Professor, Department of Natural Resources and Land Cadastre, Institute of Earth Sciences, Belgorod National Research University, Belgorod, Russia.

References

Барталев С.А., Лупян Е.А. 2013. Исследования и разработки ИКИ РАН по развитию методов спутникового мониторинга растительного покрова. Современные проблемы дистанционного зондирования Земли из космоса, 10 (1): 197–214.

Вараксин Г.С., Вайс А.А., Байкалов Е.М. 2012. Зарастание древесной растительностью земель сельскохозяйственного назначения. Вестник КрасГАУ, 5 (68): 201–205.

Королева Н.В., Тихонова Е.В., Ершов Д.В., Салтыков А.Н., Гаврилюк Е.А., Пугачевский А.В. 2018. Оценка масштабов зарастания нелесных земель в национальном парке «Смоленское Поозерье» за 25 лет по спутниковым данным Landsat. Лесоведение, 2: 83–96. DOI: 10.7868/S0024114818020018.

Левыкин С.В., Чибилев А.А., Казачков Г.В., Яковлев И.Г., Грудинин Д.А. 2013. Проблемы восстановления зональных степных экосистем на постцелинном пространстве России и Казахстана. Степной Бюллетень, 37: 5–8.

Ледовский Н.В., Ходячих И.Н. 2015. Эколого-фитоценотическая характеристика разновозрастных залежей степной зоны Южного Урала. Вестник Оренбургского государственного университета, 10 (185): 341–343.

Терехин Э.А. 2020. Пространственный анализ особенностей формирования древесной растительности на залежах лесостепи Центрального Черноземья с использованием их спектральных признаков. Современные проблемы дистанционного зондирования Земли из космоса, 17 (5): 142–156. DOI: 10.21046/2070-7401-2020-17-5-142-156.

Терехин Э.А. 2021. Индикация многолетних изменений в растительном покрове залежных земель лесостепи на основе рядов вегетационного индекса NDVI. Компьютерная оптика, 45: 245–252. DOI: 10.18287/2412-6179-CO-797.

Физико-географическое районирование центральных черноземных областей. 1961. Под. ред. Ф.Н. Милькова. Воронеж, Изд-во Воронежского университета, 263 с.

Шпедт А.А., Александрова С.В. 2007. Экономическая оценка почв залежных и пахотных земель в условиях Красноярского края. Вестник Красноярского государственного аграрного университета, 6: 62–65.

He M., Kimball S.J., Maneta P.M., Maxwell D.B., Moreno A., Beguería S., Wu X. 2018. Regional Crop Gross Primary Productivity and Yield Estimation Using Fused Landsat-MODIS Data. Remote Sensing, 10 (3): 372. DOI: 10.3390/rs10030372.

Justice C.O., Townshend J.R.G., Vermote E.F., Masuoka E., Wolfe R.E., Saleous N., Roy D.P., Morisette J.T. 2002. An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 83 (1–2): 3–15. DOI: 10.1016/S0034-4257(02)00084-6.

le Maire G., Dupuy S., Nouvellon Y., Loos R.A., Hakamada R. 2014. Mapping short-rotation plantations at regional scale using MODIS time series: Case of eucalypt plantations in Brazil. Remote Sensing of Environment, 152: 136–149. DOI: 10.1016/j.rse.2014.05.015.

Lopresti M.F., Di Bella C.M., Degioanni A.J. 2015. Relationship between MODIS-NDVI data and wheat yield: A case study in Northern Buenos Aires province, Argentina. Information Processing in Agriculture, 2 (2): 73–84. DOI: 10.1016/j.inpa.2015.06.001.

Pan Y., Li L., Zhang J., Liang S., Zhu X., Sulla-Menashe D. 2012. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sensing of Environment, 119: 232–242. DOI: 10.1016/j.rse.2011.10.011.

Pasolli L., Asam S., Castelli M., Bruzzone L., Wohlfahrt G., Zebisch M., Notarnicola C. 2015. Retrieval of Leaf Area Index in mountain grasslands in the Alps from MODIS satellite imagery. Remote Sensing of Environment, 165: 159–174. DOI: 10.1016/j.rse.2015.04.027.

Pringle M.J., Denham R.J., Devadas R. 2012. Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. International Journal of Applied Earth Observation and Geoinformation, 19: 276–285. DOI: 10.1016/j.jag.2012.05.015.

Prishchepov A.V., Radeloff V.C., Dubinin M., Alcantara C. 2012. The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sensing of Environment, 126: 195–209. DOI: 10.1016/j.rse.2012.08.017.

Yoon H., Kim S. 2020. Detecting abandoned farmland using harmonic analysis and machine learning. ISPRS Journal of Photogrammetry and Remote Sensing, 166: 201–212. DOI: 10.1016/j.isprsjprs.2020.05.021.


Abstract views: 132

Share

Published

2022-02-07

How to Cite

Terekhin, E. A. (2022). Long-term Dynamics of the Vegetation Index for Abandoned Farmlands in the Central Chernozem Region of Russia. Regional Geosystems, 45(4), 505-515. https://doi.org/10.52575/2712-7443-2021-45-4-505-515

Issue

Section

Earth Sciences