Soil formation under meadow communities on the Middle Urals ash dumps

Authors

  • Tatyana А. Petrova Ural Federal University named after the first President B.N. Yeltsin
  • Olga А. Nekrasova Ural Federal University named after the first President B.N. Yeltsin
  • Anton P. Uchaev Ural Federal University named after the first President B.N. Yeltsin
  • Maria I. Dergacheva Institute of Soil Science and Agrochemistry SB RAS
  • Tatyana А. Radchenko Ural Federal University named after the first President B.N. Yeltsin
  • Anna А. Betekhtina Ural Federal University named after the first President B.N. Yeltsin

DOI:

https://doi.org/10.52575/2712-7443-2021-45-3-301-315

Keywords:

ash, substrate, ash dump, meadow communities, Technosols, southern taiga, Middle Urals

Abstract

The formation of plant communities and soils on ash dumps reduces their negative impact on the environment however, there are little data on the properties of Technosols formed on the ash substrate during spontaneous vegetation. Comprehensive geobotanical and soil studies were carried out on Sredneuralskaya thermal power plant (SUTPP) fly ash dump area spontaneously overgrown with herbaceous vegetation, as well as on background areas with secondary post-forest meadows. The purpose of the study was to identify the features of soils formed on a 50-year-old ash dump under meadow communities in the southern taiga conditions of the Middle Urals. It was revealed that in the process of the primary succession on the ash dump, herb-grass meadow communities have been formed. In general, the ash substrate turned out to be heterogeneous in its physicochemical properties. However, the young soils formed in its upper layer (Technosols) are similar in morphological structure and features of profile differentiation in terms of the content of organic carbon, total nitrogen, mobile forms of phosphorus and potassium, exchange cations of calcium and magnesium (with the maximum accumulation of the studied elements in the humus horizon) as well as in the reaction of the medium. In comparison with the background soils, the content of most biogenic elements in the young soils of the ash dump is significantly lower. The data obtained will contribute to the establishment of soil formation patterns on technogenic substrates and, ultimately, will allow influencing the transformation of technogenic ecosystems. Since there is little information on the properties of Technosols formed on ash dumps during spontaneous succession, the data obtained will help to establish the patterns of soil formation on technogenic substrates, and ultimately will allow influencing the rate of soil formation.

Downloads

Download data is not yet available.

Author Biographies

Tatyana А. Petrova, Ural Federal University named after the first President B.N. Yeltsin

postgraduate student of the Department of Ecology, Department of Earth and Space Sciences of the Institute of Natural Sciences and Mathematics of the Ural Federal University named after the first President B.N. Yeltsin,
Yekaterinburg, Russia

Olga А. Nekrasova, Ural Federal University named after the first President B.N. Yeltsin

candidate of Biological Sciences, associate Professor of the Department of Ecology of the Department of Earth and Space Sciences of the Institute of Natural Sciences and Mathematics of the Ural Federal University named after the first President B.N. Yeltsin,
Yekaterinburg, Russia

Anton P. Uchaev, Ural Federal University named after the first President B.N. Yeltsin

candidate of Sciences in Biology, senior lecturer of the Department of Ecology, Department of Earth and Space Sciences of the Institute of Natural Sciences and Mathematics of the Ural Federal University named after the first President B.N. Yeltsin,
Yekaterinburg, Russia

Maria I. Dergacheva, Institute of Soil Science and Agrochemistry SB RAS

professor, doctor of Biological Sciences, Chief Researcher of the Laboratory of Biogeocenology of the Institute of Soil Science and Agrochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; professor of the Department of Soil Science and Soil Ecology of the Biological Institute of the Tomsk State University,
Tomsk, Russia

Tatyana А. Radchenko, Ural Federal University named after the first President B.N. Yeltsin

candidate of Biological Sciences, associate Professor of the Department of Ecology of the Department of Earth and Space Sciences of the Institute of Natural Sciences and Mathematics of the Ural Federal University named after the first President B.N. Yeltsin,
Yekaterinburg, Russia

Anna А. Betekhtina, Ural Federal University named after the first President B.N. Yeltsin

candidate of Biological Sciences, associate Professor of the Department of Ecology of the Department of Earth and Space Sciences of the Institute of Natural Sciences and Mathematics of the Ural Federal University named after the first President B.N. Yeltsin,
Yekaterinburg, Russia

References

Аринушкина Е.В. 1970. Руководство по химическому анализу почв. Москва, Изд-во МГУ, 488 с.

Воробьева Л.А. 2006. Теория и практика химического анализа почв. М., ГЕОС, 400 с.

Климатические данные городов по всему миру. Электронный ресурс. URL: http://ru.climate-data.org (дата обращения: 07.07.2021).

World Reference Base for Soil Resources. 2014. International soil classification system for naming soils and creating legends for soil maps. 2015. Rome, Food and agriculture organization of the United Nations, 192 pp.

Гаджиев И.М., Курачев В.М. 1992. Генетические и экологические аспекты исследования и классификация почв техногенных ландшафтов. В кн.: Экология и рекультивация техногенных ландшафтов. Новосибирск, Наука: 6–15.

Гафуров Ф.Г. 2008. Почвы Свердловской области. Екатеринбург, Изд-во Уральского Университета, 396 с.

Константинов А.О., Новоселов А.А., Лойко С.В. 2018. Особенности процессов почвообразования на участках самозаростающих золоотвалов твердотопливной теплоэлектростанции. Вестник Томского государственного университета. Биология, 43: 6–24. DOI: 10.17223/19988591/43/1.

Лукина Н.В., Чибрик, Т.С., Глазырина М.А., Филимонова, Е.И. 2019. Динамика восстановления растительности и микоризы на рекультивированных и нерекультивированных участках золоотвала Верхнетагильской ГРЭС (Средний Урал). Экосистемы, 20: 188–196.

Махнев А.К., Чибрик Т.С., Трубина М.Р., Лукина Н.В., Гебель Н.Э., Терин А.А., Еловиков Ю.И., Топорков Н.В. 2002. Экологические основы и методы биологической рекультивации золоотвалов тепловых электростанций на Урале. Екатеринбург, Уральское отделение РАН, 356 с.

Пасынкова М.В. 1974. Зола углей как субстрат для выращивания растений. Растения и промышленная среда, 3: 29–44.

Пономарева В.В., Плотникова Т.А. 1968. Методика и некоторые результаты фракционирования гумуса черноземов. Почвоведение, 11: 104–117.

Раменский Л.Г., Цаценкин И.А., Чижиков О.Н., Антипин Н.А. 1956. Экологическая оценка кормовых угодий по растительному покрову. М., Сельхозгиз, 472 с.

Чибрик Т.С., Лукина Н.В., Филимонова Е.И., Глазырина М.А. 2011. Экологические основы и опыт биологической рекультивации нарушенных промышленностью земель. Екатеринбург, Изд-во Урал, 268 с.

Шеремет Н.В., Ламанова Т.Г., Доронькин В.М., Ветлужских Н.В. 2018. Формирование растительности при естественном зарастании золоотвалов на юге Западной Сибири. Растительный мир азиатской России, 4 (32): 95–101. DOI: 10.21782/RMAR1995-2449-2018-4(95-101).

Chibrik T.S., Lukina N.V., Filimonova E.I., Glazyrina M.A., Rakov E.A., Maleva M.G., Prasad M.N.V. 2016. Biological Recultivation of Mine Industry Deserts: Facilitating the Formation of Phytocoenosis in the Middle Ural Region, Russia. Bioremediation and Bioeconomy, 389–418. DOI: 10.1016/B978-0-12-802830-8.00016-2.

Chu L.M. 2008. Natural revegetation of coal fly ash in a highly saline disposal lagoon in Hong Kong. Applied Vegetation Science, 11 (3): 297–306. DOI: 10.3170/2008-7-18427.

Gajic G., Djurdjevic L., Kostic O., Jaric S., Mitrovic M., Pavlovi P. 2018. Ecological Potential of Plants for Phytoremediation and Ecorestoration of Fly Ash Deposits and Mine Wastes. Frontiers in in Environmental Science, 6: 124 р. DOI: 10.3389/fenvs.2018.00124.

Jambhulkar H.P., Juwarkar A.A. 2009. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicology and Environmental Safety, 72 (4): 1122–1128. DOI: 10.1016/j.ecoenv.2008.11.002.

Kostic O., Mitrovic M., Knezevic M., Jaric S., Gajic G.M., Durdevic L, Pavlovic P. 2012. The potential of four woody species for the revegetation of fly ash deposits from the 'Nikola Tesla-a' thermoelectric plant (Obrenovac, Serbia). Archives of Biological Sciences, 64 (1): 145–158. DOI: 10.2298/ABS1201145K.

Mustafa B, Hajdari A, Krasniqi F, Morina I, Riesbeck F, Sokoli A.2012. Vegetation of the ash dump of the “Kosova A” power plant and the slag dump of the “Ferronikeli” Smelter in Kosovo. Research Journal of Environmental and Earth Sciences, 4 (9): 823–834.

Nekrasova O., Radchenko T., Filimonova E., Lukina N., Glazyrina M., Dergacheva M., Uchaev A., Betekhtina A. 2020. Natural forest colonization and formation on ash dump in southern taiga. Folia Forestalia Polonica, Series A – Forestry, 62 (4): 306–316. DOI: 10.2478/ffp-2020-0029.

Pandey V.C. 2015. Assisted phytoremediation of fly ash dumps through naturally colonized plants. Ecological Engineering, 82: 1–5. DOI: 10.1016/j.ecoleng.2015.04.002.

Pandey V.C., Bajpai O., Singh N. 2016. Plant regeneration potential in fly ash ecosystem. Urban Forestry & Urban Greening, 15: 40–44. DOI: 10.1016/j.ufug.2015.11.007.

Pandey V.C., Prakash P., Bajpai O., Kumar A., Singh N. 2015. Phytodiversity on fly ash deposits: evaluation of naturally colonized species for sustainable phytorestoration. Environmental Science and Pollution Research, 22 (4): 2776–2787. DOI: 10.1007/s11356-014-3517-0

Pandey V.C., Singh K., Singh R.P, Singh B. 2012. Naturally growing Saccharum munja L. on the fly ash lagoons: a potential ecological engineer for the revegetation and stabilization. Ecological Engineering, 40: 95–99. DOI: 10.1016/j.ecoleng.2011.12.019.

Pandey V.C., Singh N. 2014. Fast green capping on coal fly ash basins through ecological engineering. Ecological Engineering, 73: 671–675. DOI: 10.1016/j.ecoleng.2014.09.036.

Pandey V.C., Singh N., Singh R.P., Singh D.P. 2014. Rhizoremediation potential of spontaneously grown Typha latifolia on fly ash basins: study from the field. Ecological Engineering, 71: 722–727. DOI: 10.1016/j.ecoleng.2014.08.002.

Shaheen S.M., Hooda P.S., Tsadilas C.D. 2014. Opportunities and challenges in the use of coal fly ash for soil improvements–a review. Journal of environmental management, 145: 249–267. DOI: 10.1016/j.jenvman.2014.07.005.

Uzarowicz L, Skibab M, Leuec M, Zagorskia Z, Gąsinskid A, Trzciskie J. 2018а. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution. Catena, 162: 255–269. DOI: 10.1016/j.catena.2017.11.005.

Uzarowicz L. 2018. A sequence of Technosols developed from ashes from “Pątnow” and “Konin” thermal power stations (central Poland) combusting lignite. In: Soil Sequences Atlas. Toruń, Machina Druku: 217–228.

Uzarowicz L., Kwasowski W., Spiewak O., Switoniak M. 2018б. Indicators of pedogenesis of Technosols developed in an ash settling pond at the Belchatow thermal power station (central Poland). Soil Science Annual, 69 (1): 49–59. DOI: 10.2478/ssa-2018-0006.

Uzarowicz L., Zagorski Z. 2015. Mineralogy and chemical composition of technogenic soils (Technosols) developed from fly ash and bottom ash from selected thermal power stations in Poland. Soil Science Annual, 66 (2): 82–91. DOI: 10.1515/ssa-2015-0023.

Uzarowicz L., Zagorski Z., Mendak E., Bartminski P., Szara E., Kondras M., Oktaba L., Turek A., Rogozinski. 2017. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part Ⅰ. Properties, classification, and indicators of early pedogenesis. Catena, 157: 75–89. DOI: 10.1016/j.catena.2017.05.010.

Weber J., Strączynska S., Kocowicz A., Gilewska M., Bogacz A., Gwizdz M., Debicka M. 2015. Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation. Catena, 133: 250–254. DOI: 10.1016/j.catena.2015.05.016.


Abstract views: 246

Share

Published

2021-09-30

How to Cite

PetrovaT. А., NekrasovaO. А., Uchaev, A. P., Dergacheva, M. I., RadchenkoT. А., & BetekhtinaA. А. (2021). Soil formation under meadow communities on the Middle Urals ash dumps. Regional Geosystems, 45(3), 301-315. https://doi.org/10.52575/2712-7443-2021-45-3-301-315

Issue

Section

Earth Sciences

Most read articles by the same author(s)