Soil formation under meadow communities on the Middle Urals ash dumps
DOI:
https://doi.org/10.52575/2712-7443-2021-45-3-301-315Keywords:
ash, substrate, ash dump, meadow communities, Technosols, southern taiga, Middle UralsAbstract
The formation of plant communities and soils on ash dumps reduces their negative impact on the environment however, there are little data on the properties of Technosols formed on the ash substrate during spontaneous vegetation. Comprehensive geobotanical and soil studies were carried out on Sredneuralskaya thermal power plant (SUTPP) fly ash dump area spontaneously overgrown with herbaceous vegetation, as well as on background areas with secondary post-forest meadows. The purpose of the study was to identify the features of soils formed on a 50-year-old ash dump under meadow communities in the southern taiga conditions of the Middle Urals. It was revealed that in the process of the primary succession on the ash dump, herb-grass meadow communities have been formed. In general, the ash substrate turned out to be heterogeneous in its physicochemical properties. However, the young soils formed in its upper layer (Technosols) are similar in morphological structure and features of profile differentiation in terms of the content of organic carbon, total nitrogen, mobile forms of phosphorus and potassium, exchange cations of calcium and magnesium (with the maximum accumulation of the studied elements in the humus horizon) as well as in the reaction of the medium. In comparison with the background soils, the content of most biogenic elements in the young soils of the ash dump is significantly lower. The data obtained will contribute to the establishment of soil formation patterns on technogenic substrates and, ultimately, will allow influencing the transformation of technogenic ecosystems. Since there is little information on the properties of Technosols formed on ash dumps during spontaneous succession, the data obtained will help to establish the patterns of soil formation on technogenic substrates, and ultimately will allow influencing the rate of soil formation.
Downloads
References
Аринушкина Е.В. 1970. Руководство по химическому анализу почв. Москва, Изд-во МГУ, 488 с.
Воробьева Л.А. 2006. Теория и практика химического анализа почв. М., ГЕОС, 400 с.
Климатические данные городов по всему миру. Электронный ресурс. URL: http://ru.climate-data.org (дата обращения: 07.07.2021).
World Reference Base for Soil Resources. 2014. International soil classification system for naming soils and creating legends for soil maps. 2015. Rome, Food and agriculture organization of the United Nations, 192 pp.
Гаджиев И.М., Курачев В.М. 1992. Генетические и экологические аспекты исследования и классификация почв техногенных ландшафтов. В кн.: Экология и рекультивация техногенных ландшафтов. Новосибирск, Наука: 6–15.
Гафуров Ф.Г. 2008. Почвы Свердловской области. Екатеринбург, Изд-во Уральского Университета, 396 с.
Константинов А.О., Новоселов А.А., Лойко С.В. 2018. Особенности процессов почвообразования на участках самозаростающих золоотвалов твердотопливной теплоэлектростанции. Вестник Томского государственного университета. Биология, 43: 6–24. DOI: 10.17223/19988591/43/1.
Лукина Н.В., Чибрик, Т.С., Глазырина М.А., Филимонова, Е.И. 2019. Динамика восстановления растительности и микоризы на рекультивированных и нерекультивированных участках золоотвала Верхнетагильской ГРЭС (Средний Урал). Экосистемы, 20: 188–196.
Махнев А.К., Чибрик Т.С., Трубина М.Р., Лукина Н.В., Гебель Н.Э., Терин А.А., Еловиков Ю.И., Топорков Н.В. 2002. Экологические основы и методы биологической рекультивации золоотвалов тепловых электростанций на Урале. Екатеринбург, Уральское отделение РАН, 356 с.
Пасынкова М.В. 1974. Зола углей как субстрат для выращивания растений. Растения и промышленная среда, 3: 29–44.
Пономарева В.В., Плотникова Т.А. 1968. Методика и некоторые результаты фракционирования гумуса черноземов. Почвоведение, 11: 104–117.
Раменский Л.Г., Цаценкин И.А., Чижиков О.Н., Антипин Н.А. 1956. Экологическая оценка кормовых угодий по растительному покрову. М., Сельхозгиз, 472 с.
Чибрик Т.С., Лукина Н.В., Филимонова Е.И., Глазырина М.А. 2011. Экологические основы и опыт биологической рекультивации нарушенных промышленностью земель. Екатеринбург, Изд-во Урал, 268 с.
Шеремет Н.В., Ламанова Т.Г., Доронькин В.М., Ветлужских Н.В. 2018. Формирование растительности при естественном зарастании золоотвалов на юге Западной Сибири. Растительный мир азиатской России, 4 (32): 95–101. DOI: 10.21782/RMAR1995-2449-2018-4(95-101).
Chibrik T.S., Lukina N.V., Filimonova E.I., Glazyrina M.A., Rakov E.A., Maleva M.G., Prasad M.N.V. 2016. Biological Recultivation of Mine Industry Deserts: Facilitating the Formation of Phytocoenosis in the Middle Ural Region, Russia. Bioremediation and Bioeconomy, 389–418. DOI: 10.1016/B978-0-12-802830-8.00016-2.
Chu L.M. 2008. Natural revegetation of coal fly ash in a highly saline disposal lagoon in Hong Kong. Applied Vegetation Science, 11 (3): 297–306. DOI: 10.3170/2008-7-18427.
Gajic G., Djurdjevic L., Kostic O., Jaric S., Mitrovic M., Pavlovi P. 2018. Ecological Potential of Plants for Phytoremediation and Ecorestoration of Fly Ash Deposits and Mine Wastes. Frontiers in in Environmental Science, 6: 124 р. DOI: 10.3389/fenvs.2018.00124.
Jambhulkar H.P., Juwarkar A.A. 2009. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicology and Environmental Safety, 72 (4): 1122–1128. DOI: 10.1016/j.ecoenv.2008.11.002.
Kostic O., Mitrovic M., Knezevic M., Jaric S., Gajic G.M., Durdevic L, Pavlovic P. 2012. The potential of four woody species for the revegetation of fly ash deposits from the 'Nikola Tesla-a' thermoelectric plant (Obrenovac, Serbia). Archives of Biological Sciences, 64 (1): 145–158. DOI: 10.2298/ABS1201145K.
Mustafa B, Hajdari A, Krasniqi F, Morina I, Riesbeck F, Sokoli A.2012. Vegetation of the ash dump of the “Kosova A” power plant and the slag dump of the “Ferronikeli” Smelter in Kosovo. Research Journal of Environmental and Earth Sciences, 4 (9): 823–834.
Nekrasova O., Radchenko T., Filimonova E., Lukina N., Glazyrina M., Dergacheva M., Uchaev A., Betekhtina A. 2020. Natural forest colonization and formation on ash dump in southern taiga. Folia Forestalia Polonica, Series A – Forestry, 62 (4): 306–316. DOI: 10.2478/ffp-2020-0029.
Pandey V.C. 2015. Assisted phytoremediation of fly ash dumps through naturally colonized plants. Ecological Engineering, 82: 1–5. DOI: 10.1016/j.ecoleng.2015.04.002.
Pandey V.C., Bajpai O., Singh N. 2016. Plant regeneration potential in fly ash ecosystem. Urban Forestry & Urban Greening, 15: 40–44. DOI: 10.1016/j.ufug.2015.11.007.
Pandey V.C., Prakash P., Bajpai O., Kumar A., Singh N. 2015. Phytodiversity on fly ash deposits: evaluation of naturally colonized species for sustainable phytorestoration. Environmental Science and Pollution Research, 22 (4): 2776–2787. DOI: 10.1007/s11356-014-3517-0
Pandey V.C., Singh K., Singh R.P, Singh B. 2012. Naturally growing Saccharum munja L. on the fly ash lagoons: a potential ecological engineer for the revegetation and stabilization. Ecological Engineering, 40: 95–99. DOI: 10.1016/j.ecoleng.2011.12.019.
Pandey V.C., Singh N. 2014. Fast green capping on coal fly ash basins through ecological engineering. Ecological Engineering, 73: 671–675. DOI: 10.1016/j.ecoleng.2014.09.036.
Pandey V.C., Singh N., Singh R.P., Singh D.P. 2014. Rhizoremediation potential of spontaneously grown Typha latifolia on fly ash basins: study from the field. Ecological Engineering, 71: 722–727. DOI: 10.1016/j.ecoleng.2014.08.002.
Shaheen S.M., Hooda P.S., Tsadilas C.D. 2014. Opportunities and challenges in the use of coal fly ash for soil improvements–a review. Journal of environmental management, 145: 249–267. DOI: 10.1016/j.jenvman.2014.07.005.
Uzarowicz L, Skibab M, Leuec M, Zagorskia Z, Gąsinskid A, Trzciskie J. 2018а. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution. Catena, 162: 255–269. DOI: 10.1016/j.catena.2017.11.005.
Uzarowicz L. 2018. A sequence of Technosols developed from ashes from “Pątnow” and “Konin” thermal power stations (central Poland) combusting lignite. In: Soil Sequences Atlas. Toruń, Machina Druku: 217–228.
Uzarowicz L., Kwasowski W., Spiewak O., Switoniak M. 2018б. Indicators of pedogenesis of Technosols developed in an ash settling pond at the Belchatow thermal power station (central Poland). Soil Science Annual, 69 (1): 49–59. DOI: 10.2478/ssa-2018-0006.
Uzarowicz L., Zagorski Z. 2015. Mineralogy and chemical composition of technogenic soils (Technosols) developed from fly ash and bottom ash from selected thermal power stations in Poland. Soil Science Annual, 66 (2): 82–91. DOI: 10.1515/ssa-2015-0023.
Uzarowicz L., Zagorski Z., Mendak E., Bartminski P., Szara E., Kondras M., Oktaba L., Turek A., Rogozinski. 2017. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part Ⅰ. Properties, classification, and indicators of early pedogenesis. Catena, 157: 75–89. DOI: 10.1016/j.catena.2017.05.010.
Weber J., Strączynska S., Kocowicz A., Gilewska M., Bogacz A., Gwizdz M., Debicka M. 2015. Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation. Catena, 133: 250–254. DOI: 10.1016/j.catena.2015.05.016.
Abstract views: 246
Share
Published
How to Cite
Issue
Section
Copyright (c) 2021 REGIONAL GEOSYSTEMS
This work is licensed under a Creative Commons Attribution 4.0 International License.