Physical properties of soils with features of ancient pedogenesis in Barnaul Ob region (Altai territory, Russia)

Authors

  • Maria I. Dergacheva Institute of Soil Science and Agrochemistry SB RAS
  • Sergey P. Kulizhskiy National Research Tomsk State University
  • Artem N. Nikiforov National Research Tomsk State University
  • Elena G. Zakharova Institute of Soil Science and Agrochemistry SB RAS

DOI:

https://doi.org/10.18413/2712-7443-2020-44-4-446-461

Keywords:

soils, paleosols, Middle Pleistocene, physical properties, Priobskoe Plateau, Altai territory

Abstract

The study is devoted to identifying the specificity of the physical properties of soils containing a set of modern and Pleistocene horizons in a single profile. Soils located on the key area Volodarka in the left-bank part of the Ob region south of the Alei river mouth, on the territory referred in the literature as Barnaul Ob region are considered as the objects. The soils have features of ancient pedogenesis within the 1.5–2.0 m thickness of the profiles in the form of Pleistocene paleosol horizons located at different depths from the lower border of the modern chernozem. According to the literature, they belong to the Belovsky pedocomplex (corresponding to the stage MIS 17). It consists of three paleosols, which position is clearly traced in the outcropping of deposits of the Ob River. The physical properties of chernozem, formed on thick loess deposits, are considered for comparison. A factual analysis of the obtained data characterizing the particle size distribution, microaggregate composition, bulk density and solid phase density, as well as the parameters of porosity, structure, fineness and aggregation calculated on their basis is given. Comparison of soils with features of ancient pedogenesis and without them showed that the latter have very similar physical parameters to modern horizons formed in the upper part of all studied complex soil profiles: according to their particle size distribution, they can be classified as clay-coarsesilty with the content of clay particles in the absolute majority cases no more than 20–30 %; with a predominance in the micro-aggregate composition of fractions 0.25–0.05 mm and 0.05–0.01 mm, having a high microstructure and very high microaggregation. Paleohorizons differ from modern ones in a heavier particle size distribution, representing a coarse silty-clay light clay, with a lower (not exceeding 10–12 %) content of clay particles in the microaggregate composition, which indicates a low potential of paleosols for structuring. In general, paleosol horizons differ from modern ones in higher density, lower porosity, unsatisfactory microstructure, and very weak microaggregation. Receipt and analysis of the physical properties of paleosols revealed further evidence of the specificity of soil formation in the territory, where the horizons of modern soils and paleosols are in a single space of the profile.

Downloads

Download data is not yet available.

Author Biographies

Maria I. Dergacheva, Institute of Soil Science and Agrochemistry SB RAS

Professor, Chief Researcher of Institute Soil Science and Agrochemistry SB RAS,
Novosibirsk, Russia

Professor of the Department of Soil Science and Soil Ecology, Biological Institute of Tomsk State University,
Tomsk, Russia

Sergey P. Kulizhskiy, National Research Tomsk State University

Professor, Head of the Department of Soil Science and Soil Ecology, Biological Institute of Tomsk State University,
Tomsk, Russia

Artem N. Nikiforov, National Research Tomsk State University

Junior Researcher, Laboratory for Monitoring Forest Ecosystems, Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences,
Tomsk, Russia

Senior Lecturer, Department of Soil Science and Soil Ecology, Biological Institute of Tomsk State University,
Tomsk, Russia

Elena G. Zakharova, Institute of Soil Science and Agrochemistry SB RAS

Junior Researcher, Laboratory of biogeocenology, Institute of Soil Scince and Agrochemistry of the Siberian Branch of the Russian Academy of Sciences,
Novosibirsk, Russia

References

Классификация и диагностика почв СССР. 1977. М., Колос, 225 с.

Классификация и диагностика почв России. 2004. Смоленск, Ойкумена, 341 с.

Теории и методы физики почв. 2007. М., Тула, Изд-во Гриф и К., 616 с.

Аринушкина Е.В. 1970. Руководство по химическому анализу почв. М., Изд-во Московского университета, 487 с.

Архангельская Т.А., Прохоров М.В., Мазиров М.А. 2008. Годовая динамика температуры почв палеокриогенных комплексов Владимирского ополья. Криосфера Земли, 12 (3): 80–86.

Вадюнина А.Ф., Корчагина З.А. 1973. Методы исследования физических свойств почв и грунтов. М., Изд-во Московского университета, 399 с.

Дергачева М.И., Деревянко А.П., Феденёва И.Н. 2006. Эволюция природной среды Горного Алтая в позднем плейстоцене и голоцене. Новосибирск, Изд-во Института археологии и этнографии СО РАН, 144 с.

Дергачева М.И., Пономарев С.Ю. 2014. Морфогенетические особенности почв с древними признаками почвообразования восточной части Приобского плато. Вестник Оренбургского государственного университета, 6 (167): 207-212.

Дергачева М.И. 2018. Система гумусовых веществ как основа диагностики палеопочв и реконструкции палеоприродной среды. Новосибирск, Изд-во СО РАН, 292 с.

Евсеев А.В., Хорев В.С. 1972. Сравнительная характеристика физических свойств ископаемых и современных почв южного Приобья. Вестник МГУ. Серия географическая, 3: 91−93.

Захарова E.Г. 2011. Варьирование свойств в верхней части современных почв и поверхностных палеопочв ключевого участка Володарка (Барнаульское Приобье). Материалы II Международной научной молодежной школы по палеопочвоведению. Новосибирск, ООО «Талер-Пресс»: 91–94.

Качинский Н.А. 1958. Механический и микроагрегатный состав почвы, методы его изучения. М., Изд-во АН СССР, 192 с.

Кулижский С.П., Коронатова Н.Г., Артымук С.Ю., Соколов Д.А., Новокрещенных Т.А. 2010. Сравнение методов седиментометрии и лазерной дифрактометрии при определении грану- лометрического состава почв естественных и техногенных ландшафтов. Вестник Томского государственного университета. Биология, 4 (12): 21–31.

Макеев А.О. 2012. Поверхностные палеопочвы лёссовых водоразделов Русской равнины. М., Молнет, 260 с.

Морозова Т.Д. 1981. Развитие почвенного покрова Европы в позднем плейстоцене. М., Наука, 280 с.

Учаев А.П., Некрасова О.А., Дергачева М.И. 2018. Диагностика палеоприродной среды лесостепной зоны Южного Урала на границе Брюнес-Матуяма. Научные ведомости Белгородского государственного университета. Естественные науки, 42 (2): 142–151.

Фоминых Л.А., Золотарева Б.Н., Пинский Д.Л. 2010. Сравнительный анализ палеопочв в древних ландшафтах севера России. Криосфера Земли, 14 (2): 56–68.

Хохлова О.С., Хохлов А.А., Купцова Л.В., Моргунова Н.Л. 2014. Почвенноархеологические исследования короткого педохроноряда в курганном могильнике поздней бронзы (срубная культура) в Оренбургском Предуралье. Известия Самарского научного центра Российской академии наук, 16 (3): 298–307.

Чижикова Н.П., Панин П.Г. 2007. Информативность тонкодисперсной части палеопочв и лёссов позднего и среднего плейстоцена центра Восточно-Европейской равнины. Бюллетень Почвенного института им. В.В. Докучаева, 59: 28−41.

Bockheim J.G. 2013. Paleosols in the Transantarctic Mountains: indicators of environmental change. Solid Earth, 4: 451–459.

Caudill M.R., Driese S.G., Mora C.I. 1997. Physical compaction of Vertic Paleosols: Implications for burial diagenesis and palaeo-precipitation estimates. Sedimentology, 44 (4): 673–685.

Horton R., Thompson M.L., McBride J.F. 1988. Determination of effective porosity of soil materials. Agronomy Reports, 5.

Kaiser K., Schoch W.H., Miehe G. 2007. Holocene paleosols and colluvial sediments in Northeast Tibet (Qinghai Province, China): properties, dating and paleoenvironmental implications. Catena, 69 (2): 91–102.

Marković S.B., Kostić N., Oches E.A. 2004. Paleosols in the Ruma loess section. Revista Mexicana de Ciencias Geológicas, 21: 79–87.

Novothny Á., Frechen M., Horváth E., Wacha L., Rolf Ch. 2011. Investigating the penultimate and last glacial cycles of the Sütto loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quaternary International, 234 (1-2): 75–85.

Nunez M.A.; Recio J.M. 2007. Kaolinitic paleosols in the south west of the Iberian Peninsula Sierra Morena region, Spain; paleoenvironmental implications. Catena (Giessen), 70 (3): 388–395.

Nugteren G., Vandenberghe J., van Huissteden K., An Z. 2004. A Quaternary climate record based on grain size analysis from the Luochuan loess section on the Central Loess Plateau, China. Global and Planetary Change, 41: 167–183.

Ottner F., Sedov S., Baatar U.O., Wriessnig K. 2013. Grain size and mineralogical indicators of weathering in the Oberlaab loess-paleosol sequence, Upper Austria. Quaternary Science Journal, 62 (1): 34–43.

Retallack G.J. 2001. Soils of the past: an introduction to paleopedology. Oxford, UK, Blackwell, 550 p.

Shao T., Wang R., Xu Z., Wei P., Zhao J., Niu J., Song D. 2020. Permeability and Groundwater Enrichment Characteristics of the Loess-Paleosol Sequence in the Southern Chinese Loess Plateau. Water, 12: 870.

Sheldon N.D., Retallack G.J. 2001. Equation for compaction of paleosols due to burial. Geology, 29: 247–250.

Vandenberghe J., An Z., Nugteren G., Huayu L., Van Huissteden K. 1997. New absolute timescale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology, 25 (1): 35–38.

Velichko A.A., Morozova T.D., Nechaev V.P., Rutter N.W., Dlussky K.G., Little E.C., Catto N.R., Semenov V.V., Evans M.E. 2006. Loess/paleosol/cryogenic Formation and structure near the northern limit of loess deposition, East European Plain, Russia. Quaternary International, 152–153: 14–30.

Wright V.P. 1992. Paleosol Recognition: a Guide to Early Diagenesis in Terrestrial Settings. Developments in Sedimentology, 47: 591–619.

Yakimenko E.Y. 1995. Pleistocene Paleosols in the loess and loess-like sediments of the central part of the Russian Plain. Quaternary Science Reviews, 14 (7): 747–753.

Wang X., Peng P.A., Ding Z.L. 2005. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires. Palaeogeography, Palaeoclimatology, Palaeoecology, 223 (1-2): 9–19.

Wu T., Wang Y., Lv J., Zhang B. 2011. Soil water characteristics of Middle Pleistocene paleosol layers on the loess Plateau. African Journal of Biotechnology, 10 (53): 10856–10863.

Zhou Y., Retallack G.J., Huang C. 2014. Early Eocene paleosol developed from basalt in southeastern Australia: implications for paleoclimate. Arabian Journal of Geosciences, 8 (3): 1281-1290.

Share

Published

2021-03-16

How to Cite

Dergacheva, M. I., Kulizhskiy, S. P., Nikiforov, A. N., & Zakharova, E. G. (2021). Physical properties of soils with features of ancient pedogenesis in Barnaul Ob region (Altai territory, Russia). Regional Geosystems, 44(4), 446-461. https://doi.org/10.18413/2712-7443-2020-44-4-446-461

Issue

Section

Earth Sciences

Most read articles by the same author(s)