Concept of Cryohydroaeolian Landform Development in Postglacial Continental Settings in the North of Western Siberia

This research was carried out under the state assignment of the Oil and Gas Research Institute RAS within the framework of the project “Improving the efficiency and environmental safety of hydrocarbon resource development on the shelf and adjacent land of the Arctic and subarctic regions of Russia under changing climate conditions” (No. 125020501403-7).

Authors

  • Oleg S. Sizov Oil and Gas Research Institute, Russian Academy of Sciences

DOI:

https://doi.org/10.52575/2712-7443-2025-49-4-735-752

Keywords:

aeolian landforms, Western Siberia, open systems, ice-sheet glaciation, morpholithogenesis, geomorphological formation

Abstract

Aeolian deposits and landforms are widespread across the northern part of Western Siberia and play an important role in the evolution of contemporary landscapes. Nevertheless, they are often treated as natural features that are unique and atypical for high-latitude environments, and there is still no unified view of the regularities and fundamental causes of their origin. The aim of this study is to develop a general concept of cryohydroaeolian landform development in postglacial continental settings of high latitudes. The research is based on recent theoretical advances in fluvial-aeolian and glacio-aeolian interactions, as well as on the author’s long-term field campaigns and remote-sensing analyses. The main result is a conceptual interpretation of aeolian morpholithosystems in northern Western Siberia as open, hierarchically organized geomorphological systems in which aeolian processes functionally integrate and complete the erosion-and-accumulation cycle of sand transformation initiated by the landform-shaping impact of continental ice-sheet glaciation. The proposed concept organically integrates the existing methodology of open systems with the formational approach in geomorphology and provides a fundamental basis for predicting the response of northern aeolian morpholithosystems to large-scale anthropogenic disturbance and long-term climate change.

Downloads

Download data is not yet available.

Author Biography

Oleg S. Sizov, Oil and Gas Research Institute, Russian Academy of Sciences

Candidate of Geographical Sciences, Senior Researcher, Laboratory for Integrated Geo-Geophysical Studies of Continental Shelf Hydrocarbon Development, Moscow, Russia
E-mail: kabanin@yandex.ru

References

Список литературы

Арманд А.Д. 1963. Обратная связь и саморазвитие рельефа. В кн.: Вопросы географии. Сбор-ник 63. Количественные методы в геоморфологии. М., Географгиз: 49–63.

Асеев А.А. 1987. Геоморфологические корреляции: настоящее и будущее. Геоморфология, 1: 17–21.

Астахов В.И. 1999. Последнее оледенение арктических равнин России (Строение осадочного комплекса и геохронология). Дис. … д. г.-м. наук. СПб., 384 с.

Астахов В.И., Назаров Д.В. 2010. Стратиграфия верхнего неоплейстоцена севера Западной Сибири и ее геохронометрическое обоснование. Региональная геология и металлоге-ния, 43: 36–47.

Величко А.А., Тимирева С.Н. 2005. Западная Сибирь – великая позднеледниковая пустыня. Природа, 5(1077): 54–63.

Воскресенский К.С. 2001. Современные рельефообразующие процессы на равнинах Севера России. М., Издательство Географического факультета Московского государственного университета, 262 с.

Жеребятьева Н.В., Сизов О.С. 2022. Особенности видового разнообразия и структуры расти-тельного покрова на эоловых формах рельефа в долине р. Надым. Географическая сре-да и живые системы, 2: 6–24. https://doi.org/10.18384/2712-7621-2022-2-6-24

Земцов А.А. 1962. Развевание песков на севере Западно-Сибирской низменности. В кн.: Во-просы географии Сибири. Выпуск 4. Томск, Издательство Томского университета: 81–90.

Земцов А.А. 1976. Геоморфология Западно-Сибирской равнины: Северная и центральная ча-сти. Томск, Издательство Томского университета, 343 с.

Зыкина В.С., Зыкин В.С., Вольвах А.О., Овчинников И.Ю., Сизов О.С., Соромотин А.В. 2017. Строение, криогенные образования и условия формирования верхнечетвертичных от-ложений Надымского Приобья. Криосфера Земли, 21(6): 14–25. https://doi.org/10.21782/KZ1560-7496-2017-6(14-25)

Зыкина В.С., Зыкин В.С., Маликова Е.Л. 2023. Эоловый рельеф Западной Сибири. В кн.: XXXVII пленум Геоморфологической комиссии Российской Академии Наук. Всерос-сийская научно-практическая конференция с международным участием, Иркутск, 05–10 сентября 2023. Иркутск, Издательство Института земной коры СО РАН: 134–138.

Капитонова О.А., Селиванов А.Е., Капитонов В.И. 2017. Структура растительных сообществ начальных стадий сукцессий на антропогенных песчаных обнажениях лесотундры и се-верной тайги Западной Сибири. Сибирский экологический журнал, 24(6): 731–745. https://doi.org/10.15372/SEJ20170606

Кашменская О.В. 1980. Теория систем и геоморфология. Новосибирск, Наука. Сибирское от-деление, 119 с.

Коронатова Н.Г., Миляева Е.В. 2011. Сукцессия фитоценозов при зарастании выработанных карьеров в подзоне северной тайги Западной Сибири. Сибирский экологический жур-нал, 18(5): 697–705.

Ларионов Г.А. 1993. Эрозия и дефляция почв: основные закономерности и количественные оценки. М., Издательство Московского государственного университета, 200 с.

Лоботросова С.А. 2014. Восстановление растительности на эоловых формах рельефа в се-верной тайге Западной Сибири. Криосфера земли, 18(1): 83–87.

Лунгерсгаузен Г.Ф. 1955. Некоторые итоги аэрогеологических исследований в Западной Си-бири (Очерк новейших тектонических движений). Советская геология, 45: 52–77.

Москаленко Н.Г. 1999. Антропогенная динамика растительности равнин криолитозоны Рос-сии. Новосибирск, Наука, 280 с.

Сизов О.С. 2015. Геоэкологические аспекты современных эоловых процессов северотаежной подзоны Западной Сибири. Новосибирск, Академическое издательство «Гео», 121 с.

Сизов О.С. 2025a. Особенности развития техногенной нарушенности на севере Западной Си-бири в связи с добычей и транспортировкой нефти и газа. Экология и промышленность России, 29(3): 58–65. https://doi.org/10.18412/1816-0395-2025-3-58-65

Сизов О.С. 2025b. Картографическая оценка морфометрических и морфодинамических ха-рактеристик наиболее крупных котловин выдувания на севере Западной Сибири. Геоде-зия и картография, 1019(5): 28–38. https://doi.org/10.22389/0016-7126-2025-1019-5-28-38

Сизов О.С., Лоботросова С.А., Соромотин А.В. 2017. Лишайниковые сосняки северной тайги Западной Сибири как индикатор ледниковых условий рельефообразования. Проблемы региональной экологии, 2: 60–68.

Сизов О.С., Федоров Р.Ю., Соромотин А.В. 2023. Оценка эффективности мер по ветрозащите населения города Надым. Экология урбанизированных территорий, 3: 93–102.

Симонов Ю.Г., Конищев В.Н., Лукашов А.А., Мысливец В.И., Никифоров Л.Г., Рычагов Г.И. 1998. Учение о морфолитогенезе и его место в географической науке. Исторические аспекты. Вестник Московского университета. Серия 5. География, 4: 41–48.

Таргульян В.О. 2019. Теория педогенеза и эволюции почв. М., ГЕОС, 295 с.

Тимофеев Д.А. 1972. О некоторых геоморфологических законах. Геоморфология, 2: 3–12.

Флоренсов Н.А. 1978. Очерки структурной геоморфологии. М., Наука, 237 с.

Чичагов В.П. 2011. Проблемы аридной геоморфологии. Геоморфология, 2: 13–23.

Brodzikowski K., van Loon A.J. 1990. Glacigenic Sediments (Developments in Sedimentology, Volume 49). New York, Elsevier Science, 673 p.

Chorley R.J. 1962. Geomorphology and General Systems Theory. US Government Printing Office. Professional Paper, 500-B: 1–10. https://doi.org/10.3133/pp500B

Courrech du Pont S., Narteau C., Gao X. 2014. Two Modes for Dune Orientation. Geology, 42(9): 743–746. https://doi.org/10.1130/G35657.1

Derbyshire E., Owen L.A. 2018. Glacioaeolian Processes, Sediments, and Landforms. In: Past Gla-cial Environments. Elsevier: 273–308. https://doi.org/10.1016/B978-0-08-100524-8.00008-7

Field J.P., Breshears D.D., Whicker J.J. 2009. Toward a More Holistic Perspective of Soil Erosion: Why Aeolian Research Needs to Explicitly Consider Fluvial Processes and Interactions. Aeo-lian Research, 1(1–2): 9–17. https://doi.org/10.1016/j.aeolia.2009.04.002

Forman S.L., Ingolfsson O., Gataullin V., Manley W.F., Lokrantz H. 2002. Late Quaternary stratig-raphy, glacial limits, and paleoenvironments of the Marresale area, Western Yamal Peninsula, Russia. Quaternary Research, 57(3): 355–370. https://doi.org/10.1006/qres.2002.2322

Goudie A.S. 2013. Arid and Semi-Arid Geomorphology. New York, Cambridge University Press, 467 p. https://doi.org/10.1017/CBO9780511794261

Huang H.Q., Nanson G.C. 2000. Hydraulic Geometry and Maximum Flow Efficiency as Products of the Principle of Least Action. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 25(1): 1–16. https://doi.org/10.1002/(SICI)1096-9837(200001)25:1<1::AID-ESP68>3.0.CO;2-2

Kalińska-Nartiša E., Woronko B., Ning W. 2017. Microtextural Inheritance on Quartz Sand Grains from Pleistocene Periglacial Environments of the Mazovian Lowland, Central Poland. Perma-frost and Periglacial Processes, 28(4): 741–756. https://doi.org/10.1002/ppp.1943

Kutuzov S., Legrand M., Preunkert S., Ginot P., Mikhalenko V., Shukurov K., Poliukhov A., To-ropov P. 2019. History of Desert Dust Deposition Recorded in the Elbrus Ice Core. Atmos-pheric Chemistry and Physics, 19: 11105–11126. https://doi.org/10.5194/acp-19-11105-2019

Lancaster N., Sherman D.J., Baas A.C.W. 2013. Aeolian Geomorphology. In: Treatise on Geomor-phology. Rotterdam, Elsevier, 11: 439.

Lancaster N. 2023. Geomorphology of Desert Dunes. London, Cambridge University Press, 361 p. https://doi.org/10.1017/9781108355568

Livingstone I., Warren A. 2019. Aeolian Geomorphology. A new introduction. Oxford, John Wiley & Sons, 336 p. https://doi.org/10.1002/9781118945650

McKee E.D. 1979. A Study of Global Sand Seas. Vol. 1052. US Government Printing Office, 429 p. https://doi.org/10.3133/pp1052

Nazarov D.V., Nikolskaia O.A., Zhigmanovskiy I.V., Ruchkin M.V., Cherezova A.A. 2022. Lake Yamal, an Ice-Dammed Megalake in the West Siberian Arctic During the Late Pleistocene, ∼60–35 ka. Quaternary Science Reviews, 289: 107614. https://doi.org/10.1016/j.quascirev.2022.107614

Phillips J.D. 2021. Landscape Evolution: Landforms, Ecosystems, and Soils. Amsterdam, Elsevier, 356 p. https://doi.org/10.1016/C2018-0-02719-3

Pye K., Tsoar H. 2009. Aeolian Sand and Sand Dunes. Berlin, Springer, 464 p. https://doi.org/10.1007/978-3-540-85910-9

Seppälä M. 2004. Wind as a Geomorphic Agent in Cold Climates. Cambridge, Cambridge Universi-ty Press, 358 p.

Sizov O. 2021. Predictive Mapping of Glacial and Fluvioglacial Landforms in the Nadym River Ba-sin (North of West Siberia) with TanDEM-X DEM. IEEE Journal of Selected Topics in Ap-plied Earth Observations and Remote Sensing, 14: 5656–5666. https://doi.org/10.1109/JSTARS.2021.3077474

Sizov O., Fedorov R., Pechkina Y., Kuklina V., Michugin M., Soromotin A. 2022. Urban Trees in the Arctic City: Case of Nadym. Land, 11(4): 531. https://doi.org/10.3390/land11040531

Sizov O., Konstantinov A., Volvakh A., Molodkov A. 2020. Timing and Sedimentary Record of Late Quaternary Fluvio-Aeolian Successions of the Tura-Pyshma Interfluve (SW Western Si-beria, Russia). Geosciences, 10(10): 396. https://doi.org/10.3390/geosciences10100396

Von Bertalanffy L. 1950. The Theory of Open Systems in Physics and Biology. Science, 111(2872): 23–29. https://doi.org/10.1126/science.111.2872.23

References

Armand A.D. 1963. Obratnaya svyaz' i samorazvitie rel'efa [Feedback and Self-Development of Relief]. In: Voprosy geografii. Sbornik 63. Kolichestvennye metody v geomorfologii [Questions of Geography. Collection 63. Quantitative Methods in Geomorphology]. Moscow, Publ. Geografgiz: 49–63.

Aseev A.A. 1987. Geomorfologicheskie korrelyatsii: nastoyashchee i budushchee [Geomorphological Correlations: Present and Future]. Geomorfologiya, 1: 17–21.

Astakhov V.I. 1999. Poslednee oledenenie arkticheskikh ravnin Rossii (Stroenie osadochnogo kompleksa i geokhronologiya) [The Last Glaciation of the Arctic Plains of Russia (Structure of the Sedimentary Complex and Geochronology)]. Diss. … Dr. Geol.-Min. Sci. St. Petersburg, 384 p.

Astakhov V.I., Nazarov D.V. 2010. Stratigrafiya verkhnego neopleystotsena severa Zapadnoy Sibiri i ee geokhronometricheskoe obosnovanie [Stratigraphy of the Upper Neopleistocene of the North of Western Siberia and Its Geochronometric Justification]. Regional'naya geologiya i metallogeniya, 43: 36–47.

Velichko A.A., Timireva S.N. 2005. Western Siberia – a Great Late Ice Age Desert. Priroda, 5(1077): 54–63 (in Russian).

Voskresenskiy K.S. 2001. Sovremennye rel'efoobrazuyushchie protsessy na ravninakh Severa Rossii [Modern Relief-Forming Processes on the Plains of Northern Russia]. Moscow, Publ. Faculty of Geography, Moscow State University, 262 p.

Zherebyateva N.V., Sizov O.S. 2022. Peculiarities of Species Diversity and Structure of Vegetation Cover on Aeolian Relief Forms in the Nadym River Valley. Geographical Environment and Living Systems, 2: 6–24 (in Russian). https://doi.org/10.18384/2712-7621-2022-2-6-24

Zemtsov A.A. 1962. Razvevanie peskov na severe Zapadno-Sibirskoy nizmennosti [Sand Deflation in the North of the West Siberian Lowland]. In: Voprosy geografii Sibiri. Vypusk 4 [Questions of Geography of Siberia. Issue 4]. Tomsk, Publ. Tomsk University: 81–90.

Zemtsov A.A. 1976. Geomorfologiya Zapadno-Sibirskoy ravniny: Severnaya i tsentral'naya chasti [Geomorphology of the West Siberian Plain: Northern and Central Parts]. Tomsk, Publ. Tomsk University, 343 p.

Zykina V.S., Zykin V.S., Volvach A.O., Ovchinnikov I.Yu., Sizov O.S., Soromotin A.V. 2017. Upper Quaternary Deposits of the Nadym ob Area: Stratigraphy, Cryogenic Formations, and Deposition Environments. Earth’s Cryosphere, 21(6): 14–25 (in Russian). https://doi.org/10.21782/KZ1560-7496-2017-6(14-25)

Zykina V.S., Zykin V.S., Malikova E.L. 2023. Aeolian Relief of Western Siberia. In: XXXVII Plenum of the Geomorphological Commission of the Russian Academy. All-Russian Scientific and Practical Conference with International Participation, Irkutsk, 5–10 September 2023. Irkutsk, Publ. Institute of the Earth's Crust SB RAS: 134–138 (in Russian).

Kapitonova O.A., Selivanov A.E., Kapitonov V.I. 2017. Structure of Plant Communities in the Early Succession Stages on Anthropogenic Sandy Outcrops of the Forest Tundra and Northern Taiga of Western Siberia. Contemporary Problems of Ecology, 24(6): 651–663 (in Russian). https://doi.org/10.1134/S1995425517060063

Kashmenskaya O.V. 1980. Teoriya sistem i geomorfologiya [Systems Theory and Geomorphology]. Novosibirsk, Publ. Nauka. Siberian Branch, 119 p.

Koronatova N.G., Milyaeva E.V. 2011. Plant Community Succession in Post-Mined Quarries in the Northern-Taiga Zone of West Siberia. Contemporary Problems of Ecology, 4(5): 513–518 (in Russian). https://doi.org/10.1134/S1995425511050109

Larionov G.A. 1993. Eroziya i deflyatsiya pochv: osnovnye zakonomernosti i kolichestvennye otsenki [Soil Erosion and Deflation: Basic Patterns and Quantitative Assessments]. Moscow, Publ. Moscow State University, 200 p.

Lobotrosova S.A. 2014. Vegetation Recovery on Eolovy Relief Forms in the Northern Taiga of West Siberia. Earth's Cryosphere, 18(1): 83–87 (in Russian).

Lungersgauzen G.F. 1955. Nekotorye itogi aerogeologicheskikh issledovaniy v Zapadnoy Sibiri (Ocherk noveyshikh tektonicheskikh dvizheniy) [Some Results of Aerogeological Studies in Western Siberia (Essay on the Latest Tectonic Movements)]. Sovetskaya geologiya, 45: 52–77.

Moskalenko N.G. 1999. Antropogennaya dinamika rastitel'nosti ravnin kriolitozony Rossii [Anthropogenic Dynamics of Vegetation in the Plains of the Cryolithozone of Russia]. Novosibirsk, Publ. Nauka, 280 p.

Sizov O.S. 2015. Geoekologicheskie aspekty sovremennykh eolovykh protsessov severotaezhnoy podzony Zapadnoy Sibiri [Geoecological Aspects of Modern Aeolian Processes in the Northern Taiga Subzone of Western Siberia]. Novosibirsk, Publ. Academic "Geo", 124 p.

Sizov O.S. 2025a. Features of Development of Technogenic Disturbance in the North of Western Siberia in Connection with Oil and Gas Production and Transportation. Ecology and Industry of Russia, 29(3): 58–65 (in Russian). https://doi.org/10.18412/1816-0395-2025-3-58-65

Sizov O.S. 2025b. Cartographic Assessing the Morphometric and Morphodynamic Characteristics of the Largest Blowout Depressions in the West Siberian North. Geodesy and cartography, 1019(5): 28–38 (in Russian). https://doi.org/10.22389/0016-7126-2025-1019-5-28-38

Sizov O.S., Lobotrosova S.A., Soromotin A.V. 2017. Lichen Pine Forests of Northern Taiga of West Siberia as an Indicator of Glacial Relief Formation Conditions. Regional Environmental Issues, 2: 60–68 (in Russian).

Sizov O.S., Fedorov R.Yu., Soromotin A.V. 2023. Assessment of the Effectiveness of Measures for Wind Protection for the Population of Nadym. Ecology of urban areas, 3: 93–102 (in Russian).

Simonov Yu.G., Konishchev V.N., Lukashov A.A., Myslivets V.I., Nikiforov L.G., Rychagov G.I. 1998. Uchenie o morfolitogeneze i ego mesto v geograficheskoy nauke. Istoricheskie aspekty [The Doctrine of Morpholithogenesis and Its Place in Geographical Science. Historical Aspects]. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya, 4: 41–48.

Targulyan V.O. 2019. Theory of Pedogenesis and Soil Change in Time. Moscow, Publ. GEOS, 295 p. (in Russian)

Timofeev D.A. 1972. O nekotorykh geomorfologicheskikh zakonakh [On Some Geomorphological Laws]. Geomorfologiya, 2: 3–12.

Florensov N.A. 1978. Ocherki strukturnoy geomorfologii [Essays on Structural Geomorphology]. Moscow, Publ. Nauka, 237 p.

Chichagov V.P. 2011. Problems of Arid Geomorphology. Geomorfologiya, 2: 13–23 (in Russian).

Brodzikowski K., van Loon A.J. 1990. Glacigenic Sediments (Developments in Sedimentology, Volume 49). New York, Elsevier Science, 673 p.

Chorley R.J. 1962. Geomorphology and General Systems Theory. US Government Printing Office. Professional Paper, 500-B: 1–10. https://doi.org/10.3133/pp500B

Courrech du Pont S., Narteau C., Gao X. 2014. Two Modes for Dune Orientation. Geology, 42(9): 743–746. https://doi.org/10.1130/G35657.1

Derbyshire E., Owen L.A. 2018. Glacioaeolian Processes, Sediments, and Landforms. In: Past Gla-cial Environments. Elsevier: 273–308. https://doi.org/10.1016/B978-0-08-100524-8.00008-7

Field J.P., Breshears D.D., Whicker J.J. 2009. Toward a More Holistic Perspective of Soil Erosion: Why Aeolian Research Needs to Explicitly Consider Fluvial Processes and Interactions. Aeo-lian Research, 1(1–2): 9–17. https://doi.org/10.1016/j.aeolia.2009.04.002

Forman S.L., Ingolfsson O., Gataullin V., Manley W.F., Lokrantz H. 2002. Late Quaternary stratig-raphy, glacial limits, and paleoenvironments of the Marresale area, Western Yamal Peninsula, Russia. Quaternary Research, 57(3): 355–370. https://doi.org/10.1006/qres.2002.2322

Goudie A.S. 2013. Arid and Semi-Arid Geomorphology. New York, Cambridge University Press, 467 p. https://doi.org/10.1017/CBO9780511794261

Huang H.Q., Nanson G.C. 2000. Hydraulic Geometry and Maximum Flow Efficiency as Products of the Principle of Least Action. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 25(1): 1–16. https://doi.org/10.1002/(SICI)1096-9837(200001)25:1<1::AID-ESP68>3.0.CO;2-2

Kalińska-Nartiša E., Woronko B., Ning W. 2017. Microtextural Inheritance on Quartz Sand Grains from Pleistocene Periglacial Environments of the Mazovian Lowland, Central Poland. Perma-frost and Periglacial Processes, 28(4): 741–756. https://doi.org/10.1002/ppp.1943

Kutuzov S., Legrand M., Preunkert S., Ginot P., Mikhalenko V., Shukurov K., Poliukhov A., To-ropov P. 2019. History of Desert Dust Deposition Recorded in the Elbrus Ice Core. Atmos-pheric Chemistry and Physics, 19: 11105–11126. https://doi.org/10.5194/acp-19-11105-2019

Lancaster N., Sherman D.J., Baas A.C.W. 2013. Aeolian Geomorphology. In: Treatise on Geomor-phology. Rotterdam, Elsevier, 11: 439.

Lancaster N. 2023. Geomorphology of Desert Dunes. London, Cambridge University Press, 361 p. https://doi.org/10.1017/9781108355568

Livingstone I., Warren A. 2019. Aeolian Geomorphology. A new introduction. Oxford, John Wiley & Sons, 336 p. https://doi.org/10.1002/9781118945650

McKee E.D. 1979. A Study of Global Sand Seas. Vol. 1052. US Government Printing Office, 429 p. https://doi.org/10.3133/pp1052

Nazarov D.V., Nikolskaia O.A., Zhigmanovskiy I.V., Ruchkin M.V., Cherezova A.A. 2022. Lake Yamal, an Ice-Dammed Megalake in the West Siberian Arctic During the Late Pleistocene, ∼60–35 ka. Quaternary Science Reviews, 289: 107614. https://doi.org/10.1016/j.quascirev.2022.107614

Phillips J.D. 2021. Landscape Evolution: Landforms, Ecosystems, and Soils. Amsterdam, Elsevier, 356 p. https://doi.org/10.1016/C2018-0-02719-3

Pye K., Tsoar H. 2009. Aeolian Sand and Sand Dunes. Berlin, Springer, 464 p. https://doi.org/10.1007/978-3-540-85910-9

Seppälä M. 2004. Wind as a Geomorphic Agent in Cold Climates. Cambridge, Cambridge Universi-ty Press, 358 p.

Sizov O. 2021. Predictive Mapping of Glacial and Fluvioglacial Landforms in the Nadym River Ba-sin (North of West Siberia) with TanDEM-X DEM. IEEE Journal of Selected Topics in Ap-plied Earth Observations and Remote Sensing, 14: 5656–5666. https://doi.org/10.1109/JSTARS.2021.3077474

Sizov O., Fedorov R., Pechkina Y., Kuklina V., Michugin M., Soromotin A. 2022. Urban Trees in the Arctic City: Case of Nadym. Land, 11(4): 531. https://doi.org/10.3390/land11040531

Sizov O., Konstantinov A., Volvakh A., Molodkov A. 2020. Timing and Sedimentary Record of Late Quaternary Fluvio-Aeolian Successions of the Tura-Pyshma Interfluve (SW Western Si-beria, Russia). Geosciences, 10(10): 396. https://doi.org/10.3390/geosciences10100396

Von Bertalanffy L. 1950. The Theory of Open Systems in Physics and Biology. Science, 111(2872): 23–29. https://doi.org/10.1126/science.111.2872.23


Abstract views: 12

Share

Published

2025-12-30

How to Cite

Sizov, O. S. (2025). Concept of Cryohydroaeolian Landform Development in Postglacial Continental Settings in the North of Western Siberia: This research was carried out under the state assignment of the Oil and Gas Research Institute RAS within the framework of the project “Improving the efficiency and environmental safety of hydrocarbon resource development on the shelf and adjacent land of the Arctic and subarctic regions of Russia under changing climate conditions” (No. 125020501403-7). Regional Geosystems, 49(4), 735-752. https://doi.org/10.52575/2712-7443-2025-49-4-735-752

Issue

Section

Structure and funktioning of regional geosystems