Comparative Evaluation of Models for Determining Surface Soil Erosion (at the River Basin Level)

Authors

  • Olesya I. Grigoreva Belgorod State National Research University

DOI:

https://doi.org/10.52575/2712-7443-2025-49-3-548-560

Keywords:

surface runoff, USLE, soil losses, geospatial analysis, soil erosion by water

Abstract

In foreign practice, many empirical and physically based models are used to assess water erosion processes, which is necessary for organizing anti-erosion measures in agricultural areas. At the same time, there is no generally accepted model for calculating soil erosion in Russia, and no estimated values have been compared. This article presents the results of a comparative assessment of average annual soil losses caused by heavy rainfall in the arable lands of the Seym river basin in the Gubkinsky district of the Belgorod Region. Potential soil losses were calculated using the most common erosion models. The calculation of erosion factors was carried out using spatial analysis technologies and geoinformation programs (ArcGIS, QGIS). During the study, we assessed potential soil losses in the same area using various methods. We found that average annual estimated values ranged from 3.5 t/ha to 7.0 t/ha, which is explained by differences in the input parameters in the calculation formulas, in particular, landscape specifics, hydrophysical parameters, and various degrees of soil erodibility.

Acknowledgements: This research was funded by the Ministry of Science and Higher Education of the Russian Federation within the framework of State Assignment No. FZWG-2023-0011.

Downloads

Download data is not yet available.

Author Biography

Olesya I. Grigoreva, Belgorod State National Research University

Senior lecturer of the Department of Environmental Management and Land Cadastre, Belgorod State National Research University, Belgorod, Russia
E-mail: grigoreva_o@bsuedu.ru

References

Список литературы

Геопортал «Речные бассейны Европейской России». Электронный ресурс. URL: https://bassepr.kpfu.ru/ (дата обращения: 02 июля 2025).

Инструкция по определению расчетных гидрологических характеристик при проектировании противоэрозионных мероприятий на Европейской территории СССР. 1979. Л., Гидрометеоиздат, 62 с.

Методические указания по проектированию противоэрозионной организации территории при внутрихозяйственном землеустройстве в зонах проявления водной эрозии. 1989. Под ред. Карцева Г.А., Луки А.Н., Носова С.И. и др. М., 79 с.

Сухановский Ю.П., Пискунов А.Н. 2007. Модель с программным обеспечением для прогнозирования дождевой эрозии для пахотных земель. Курск, ВНИИЗиЗПЭ РАСХН, 20 с.

Список литературы

Буряк Ж.А., Нарожняя А.Г., Маринина О.А. 2023. Эрозионная опасность пахотных земель Белгородской области. Региональные геосистемы, 47(1): 101–115. https://doi.org/10.52575/2712-7443-2023-47-1-101-115

Герасименко В.П., Кумани М.В. 2000. Рекомендации по регулированию почвенно- гидрологических процессов на пахотных землях. Курск, ВНИИЗиЗПЭ, 108 с.

Голосов В.Н. 2006. Эрозионно-аккумулятивные процессы в речных бассейнах освоенных равнин. М., ГЕОС, 296 с.

Голосов В.Н., Жидкин А.П., Петелько А.И., Осипова М.С., Иванова Н.Н., Иванов М.М. 2022. Полевая верификация эрозионных моделей на основе исследований малого водосбора в бассейне р. Воробжи (Курская область). Почвоведение, 10: 1321–1338. https://doi.org/10.31857/S0032180X22100045.

Ермолаев О.П. 1992. Пояса эрозии в природно-антропогенных речных ландшафтах речных бассейнов. Казань, Казанский (Приволжский) федеральный университет, 148 с.

Иванов А.Л. Савин И.Ю., Столбовой В.С., Аветян С.А., Шишконакова Е.А., Каштанов А.Н. 2020. Карта агрогенной эродированности почв России. Доклады Российской академии наук. Науки о земле, 493(2): 99–102. https://doi.org/10.31857/S2686739720080095

Иванов В.Д. 1975. Оценка влияния экспозиции склона на сток талых вод и смыв почвы. Почвоведение, 10: 78–82.

Кузнецов М.С. 1981. Противоэрозионная стойкость почв. М., Изд-во МГУ, 135 с.

Ларионов Г.А. 1993. Эрозия почв и дефляция: основные закономерности и количественные оценки. М., Изд-во МГУ, 200 с.

Ларионов Г.А. Добровольская Н.Г., Краснов С.Ф., Лю Б.Ю., Неринг М.А. 1998. Теоретико- эмпирическое уравнение фактора рельефа для статистических моделей водной (дождевой) эрозии. В кн.: Эрозия почв и русловые процессы. М., Макс-Пресс Москва: 25–44.

Лисецкий Ф.Н., Половинко В.В. 2012. Эрозионные катены на земляных фортификационных сооружениях. Геоморфология, 2: 65–78.

Лисецкий Ф.Н., Светличный А.А., Черный С.Г. 2012. Современные проблемы эрозиоведения. Белгород, Константа, 456 с. https://doi.org/10.13140/2.1.1029.9682

Марциневская Л.В. 2011. Определение допустимых эрозионных потерь почвы для уровня административных районов. Международный журнал прикладных и фундаментальных исследований, 10–1: 10–13.

Мирцхулава Ц.Е. 1971. Инженерные методы расчета и прогноза водной эрозии. М., Колос, 239 с.

Смирнова Л.Г., Нарожняя А.Г., Шамарданова Е.Ю. 2012. Сравнение двух методов расчета смыва почвы на водосборах с применением ГИС-технологий. Достижения науки и техники АПК, 9: 10–12.

Соловиченко В.Д., Тютюнов С.И. 2013. Почвенный покров Белгородской области и его рациональное использование. Белгород, Отчий край, 371 с.

Спесивый О.В., Лисецкий Ф.Н. 2014. Оценка интенсивности и нормирование эрозионных потерь почвы в Центрально-Черноземном районе на основе бассейнового подхода и современных геоинформационных технологий. Научные ведомости Белгородского государственного университета. Серия Естественные науки, 10(181): 125–132.

Сурмач Г.П. 1992. Рельефообразование, формирование лесостепи, современная эрозия и противоэрозионные мероприятия. Волгоград, Б. и., 175 с.

Сурмач Г.П. 1985. О допустимых нормах эрозии и классификации почв по смытости. Почвоведение, 7: 103–111.

Bagherzadeh A. 2014. Estimation of Soil Losses by USLE Model Using GIS at Mashhad Plain, Northeast of Iran. Arabian Journal of Geosciences, 7: 211–220. https://doi.org/10.1007/s12517-012-0730-3, 2014

David W.P. 1988. Soil and Water Conservation Planning: Policy Issues and Recommendations. Journal of Philippine Development, 15: 47–84.

Desmet P.J.J., Govers G. 1996. A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. Journal of soil and water conservation, 51(5): 427–433. https://doi.org/10.1080/00224561.1996.12457102

McCool D.K., Renard K.G., Foster G.R. 1994. The Revised Universal Soil Loss Equation. Proceedings of an International Workshop on Soil Erosion. In: The Center for Technology Transfer and Pollution Prevention, Purdue University. USA, West Lafayette: 45–59.

Morgan R.P.C. 1979. Soil Erosion. London, New York, Longman, 113 p.

Panagos P., Borrelli P., Meusburger K. 2015. A New European Slope Length and Steepness Factor (LS- Factor) for Modeling Soil Erosion by Water. Geosciences, 5(2): 117–126. https://doi.org/10.3390/geosciences5020117.

Renard K., Foster G., Weesies G., McCool D., Yoder D. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook, 703: 65–100. https://doi.org/10.1201/9780203739358-5.

Wischmeier W.H., Smith D.D. 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. United States, Department of Agriculture, Agriculture handbook, 58 p.

Zhidkin A., Fomicheva D., Ivanova N., Dostál T., Yurova A., Komissarov M., Krása J. 2022. A Detailed Reconstruction of Changes in the Factors and Parameters of Soil Erosion Over the Past 250 Years in the Forest Zone of European Russia (Moscow Region). International Soil and Water Conservation Research, 10: 149–160. https://doi.org/10.1016/j.iswcr.2021.06.003

References

Buryak Zh.A., Narozhnyaya A.G., Marinina O.A. 2023. Erosion Risk of Arable Land in the Belgorod Oblast. Regional Geosystems, 47(1): 101–115 (in Russian) https://doi.org/10.52575/2712-7443- 2023-47-1-101-115.

Gerasimenko V.P., Kumani M.V. 2000. Rekomendatsii po regulirovaniyu pochvenno-gidrologicheskikh protsessov na pakhotnykh zemlyakh [Recommendations for Regulating Soil and Hydrological Processes on Arable Lands]. Kursk, Pabl. VNIIZiZPE, 108 p.

Golosov V.N. 2006. Erosionno-akkumulyativno protsessy v rechnykh basseinakh osvoennykh ravnin [Erosion and Accumulation Processes in the River Basins of Developed Plains]. Moscow, Publ. GEOS, 296 p.

Golosov V.N., Zhidkin A.P., Petel’ko A.I., Osipova M.S., Ivanova N.N., Ivanov M.M. 2022. Field Verification of Erosion Models Based on the Studies of a Small Catchment in the Vorobzha River Basin (Kursk Oblast, Russia). Eurasian Soil Science, 55(10): 1508–1523 (in Russian).

Ermolaev O.P. 1992. Poyasa erosii v prirodno-antropogennykh rechnykh landshaftakh rechnyh basseinov [Erosion Belts in Natural and Anthropogenic River Landscapes of River Basins]. Kazan, Publ. Kazanskiy (Privolzhskiy) federalnyy universitet, 148 p.

Ivanov A.L. Savin I.Yu., Stolbovoy V.S., Avetyan S.A., Shishkonakova E.A., Kashtanov A.N. 2020. Map of Anthropogenic Soil Erosion of Russia. Doklady Earth Sciences, 493(2): 654-657 (in Russian). https://doi.org/ 10.1134/S1028334X20080097

Ivanov V.D. 1975. Otsenka vliyaniya ekspozitsii sklona na stok talykh vod i smyv pochvy [Estimation of the Influence of Slope Exposure on Runoff of Meltwater and Soil Erosion]. Pochvovedeniye, 10: 78–82.

Kuznetsov M.S. 1981. Protivoerosionnaya stoikost pochv [Anti-Erosion Resistance of Soils]. Moscow, Publ. MSU, 135 p.

Larionov G.A. 1993. Erosia i deflyatsiya pochv osnovnyye zakonomernosti i kolichestvennyye otsenki erosionnogo potensiala dozhdevykh osadkov [Water and Wind Erosion: Main Features and Quantitative Assesment]. Moscow, Publ. MSU, 200 p.

Larionov G.A., Dobrovolskaya N.G., Krasnov S.F., Liu B.Yu., Nering M.A. 1998. Teoretico- empiricheskoye uravnenye factore relyefa dlya statisticheskikh madeley vadnoy (dozhdevoy) erozii [Theoretical and Empirical Equation of the Relief Factor for Statistical Models of Water (Rainfall) Erosion]. In: Erosia pochv i ruslovye protsessy [Soil Erosion and Channel Processes]. Moscow, Publ. Max-Press Moscow: 25–44.

Lisetsky F.N., Polovinko V.V. 2012. Erosion Catenas on Earthen Fortifications. Geomorfologiya, 2: 65– 78 (in Russian).

Lisetsky F.N., Svetlichnyi A.A., Chernyi S.G. 2012. Recent Developments in Erosion Science. Belgorod, Pabl. Konstanta, 456 p. (in Russian). https://doi.org/10.13140/2.1.1029.9682.

Marcinevskaya L.V. 2011. Determination of Soil Loss Tolerance for the Level of Administrative Districts. International journal of applied and fundamental research, 10(1): 10–13 (in Russian).

Mirtskhulava Ts.E. 1971. Inzhenernye metody rascheta I prognoza vodnoi erosii [Engineering Methods of Calculation and Prediction of Water Erosion]. Moscow, Publ. Kolos, 239 p.

Smirnova L.G., Narozhnyaya A.G., Shamardanova E.Yu. 2012. Comparison of Two Methods of Soil Ablation Calculation in Catchments with GIS Technology. Achievements of Science and Technology of AIC, 9: 10–12 (in Russian).

Solovichenko V.D., Tyutyunov S.I. 2013. Pochvennyy pocrov Belgorodskoy oblasti i ego ratsionalnoye ispolzovaniye [Soil Cover of the Belgorod Region and Its Rational Use]. Belgorod, Publ. Otchiy Krai, 371 p.

Spesivy O.V., Lisetskii F.N. 2014. Estimate of the Intensity and Regulation of Erosion Soil Losses in Central Chernizem Region Based on the Basin Approach. Belgorod State University Scientific Bulletin. Natural Sciences Series, 10(181): 125–132 (in Russian).

Surmach G.P. 1992. Reliefoobrasovanie, formirovanie lesostepi, sovremennaya erosia i protivoerosionnie meropriyatiya [Relief Formation, Forest-steppe Formation, Modern Erosion, and Anti-erosion Measures]. Volgograd, Publ. B. i., 175 p.

Surmach G.P. 1985. O dopustimykh normakh erozii i klassifikatsii pochv po smytosti [On the Permissible Rates of Erosion and Soil Classification by Erodibility]. Pochvovedeniye, 7: 103–111.

Bagherzadeh A. 2014. Estimation of Soil Losses by USLE Model Using GIS at Mashhad Plain, Northeast of Iran. Arabian Journal of Geosciences, 7: 211–220. https://doi.org/10.1007/s12517-012-0730-3, 2014

David W.P. 1988. Soil and Water Conservation Planning: Policy Issues and Recommendations. Journal of Philippine Development, 15: 47–84.

Desmet P.J.J., Govers G. 1996. A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. Journal of soil and water conservation, 51(5): 427–433. https://doi.org/10.1080/00224561.1996.12457102

McCool D.K., Renard K.G., Foster G.R. 1994. The Revised Universal Soil Loss Equation. Proceedings of an International Workshop on Soil Erosion. In: The Center for Technology Transfer and Pollution Prevention, Purdue University. USA, West Lafayette: 45–59.

Morgan R.P.C. 1979. Soil Erosion. London, New York, Longman, 113 p.

Panagos P., Borrelli P., Meusburger K. 2015. A New European Slope Length and Steepness Factor (LS- Factor) for Modeling Soil Erosion by Water. Geosciences, 5(2): 117–126. https://doi.org/10.3390/geosciences5020117.

Renard K., Foster G., Weesies G., McCool D., Yoder D. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook, 703: 65–100. https://doi.org/10.1201/9780203739358-5.

Wischmeier W.H., Smith D.D. 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. United States, Department of Agriculture, Agriculture handbook, 58 p.

Zhidkin A., Fomicheva D., Ivanova N., Dostál T., Yurova A., Komissarov M., Krása J. 2022. A Detailed Reconstruction of Changes in the Factors and Parameters of Soil Erosion Over the Past 250 Years in the Forest Zone of European Russia (Moscow Region). International Soil and Water Conservation Research, 10: 149–160. https://doi.org/10.1016/j.iswcr.2021.06.003


Abstract views: 105

Share

Published

2025-09-30

How to Cite

Grigoreva, O. I. (2025). Comparative Evaluation of Models for Determining Surface Soil Erosion (at the River Basin Level). Regional Geosystems, 49(3), 548-560. https://doi.org/10.52575/2712-7443-2025-49-3-548-560

Issue

Section

Methodology of geosystems research