Estimating the Afforestation Rate on Different Types of Postagrogenic Lands in the South of the Central Russian Upland
DOI:
https://doi.org/10.52575/2712-7443-2025-49-3-450-461Keywords:
abandoned agricultural lands, tree vegetation, time series, secondary succession, NDVIAbstract
Analysis of the impact produced by afforestation of postagrogenic lands on their spectral- reflective properties is a necessary condition for the development of approaches to monitoring restorative successions based on remote sensing data. The paper analyses the long-term dynamics of the vegetation index for abandoned agricultural lands in the south of the Central Russian Upland, differing in the species composition of tree vegetation and the forms of its participation. In the early 2020s, the average forest cover of postagrogenic lands with coniferous species is several times higher than that of lands with forest vegetation of deciduous species. A regional feature of postagrogenic lands with deciduous trees is that for most of them, after more than a twenty-year period of restorative successions, the forest cover does not exceed 20 %. Differences in the growth rate of the vegetation index, described by a logarithmic curve, characterize the differences between abandoned agricultural lands with deciduous and coniferous species. At the same time, the long-term dynamics of the vegetation index also characterizes the differences between abandoned lands in terms of the presence of areas of continuous or sparse tree vegetation. After a twenty-year period of restorative successions on abandoned lands with deciduous trees, a statistically significant trend in the vegetation index is observed during the formation of areas of continuous forest vegetation and is not detected in the presence of isolated trees. On postagrogenic lands with coniferous species, a statistically significant positive trend is present both in the case of the formation of continuous and sparse tree vegetation.
Acknowledgements: This research was funded by the Ministry of Science and Higher Education of the Russian Federation within the framework of State Assignment No. FZWG-2023-0011.
Downloads
References
Список литературы
Бурлуцкий В.А., Мазуров В.Н., Семешкина П.С., Косолапов В.М. 2021. Продукционный потенциал и освоение растительных сообществ залежных земель Мещовского ополья в Калужской области. Вестник российской сельскохозяйственной науки, 1: 45–52. https://doi.org/10.30850/vrsn/2021/1/45-52
Голеусов П.В., Лисецкий Ф.Н. 2009. Воспроизводство почв в антропогенных ландшафтах лесостепи. Москва, ГЕОС, 210 с.
Данилов Д.А., Яковлев А.А., Крылов И.А. 2023. Формирование естественных растительных ассоциаций на постагрогенных землях. Известия Санкт-Петербургской лесотехнической академии, 242: 60–82. https://doi.org/10.21266/2079-4304.2023.242.60-82
Домнина Е.А., Адамович Т.А., Тимонов А.С., Ашихмина Т.Я. 2022. Мониторинг зарастания заброшенных земель сельскохозяйственного назначения по спутниковым снимкам высокого разрешения. Теоретическая и прикладная экология, 3: 82–89. https://doi.org/10.25750/1995- 4301-2022-3-082-089
Иванов А.И., Иванова Ж.А., Соколов И.В. 2020. Вторичное освоение неиспользуемых угодий. Российская сельскохозяйственная наука, 2: 48–52. https://doi.org/10.31857/S2500-2627-2020-2-48-52
Карпин В.А., Петров Н.В., Туюнен А.В. 2017. Восстановление лесных фитоценозов после различных видов сельскохозяйственного использования земель в условиях среднетаежной подзоны. Сибирский лесной журнал, 6: 120–129. https://doi.org/10.15372/SJFS20170610
Левыкин С.В., Чибилёв А.А., Кочуров Б.И., Казачков Г.В. 2020. К стратегии сохранения и восстановления степей и управления природопользованием на постцелинном пространстве. Известия Российской академии наук. Серия географическая, 4: 626–636. https://doi.org/10.31857/S2587556620040093
Лежнин С.А. 2016. Создание и актуализация базы данных по зарастающим сельскохозяйственным землям республики Марий Эл. Труды Поволжского государственного технологического университета. Серия: технологическая, 4: 16–21.
Медведев А.А., Тельнова Н.О., Кудиков А.В. 2019. Дистанционный высокодетальный мониторинг динамики зарастания заброшенных сельскохозяйственных земель лесной растительностью. Вопросы лесной науки, 2(3): 1–12. https://doi.org/10.31509/2658-607X-2019-2-3-1-12
Москаленко С.В., Бобровский М.В. 2012. Расселение лесных видов растений из старовозрастных дубрав на брошенные пашни в заповеднике «Калужские засеки». Известия Самарского научного центра Российской академии наук, 14(1–5): 1332–1335.
Нечаева Т.В. 2023. Залежные земли России: распространение, агроэкологическое состояние и перспективы использования (обзор). Почвы и окружающая среда, 6(2): e215. https://doi.org/10.31251/pos.v6i2.215
Пономарёва Т.В., Пономарёв Е.И., Шишикин А.С., Швецов Е.Г. 2018. Мониторинг трансформации старопахотных почв лесостепной зоны при лесовосстановлении. География и природные ресурсы, 2: 154–161. https://doi.org/10.21782/GiPR0206-1619-2018-2(154-161)
Русанов А.М. 2012. Естественное восстановление агроландшафтов степной и лесостепной зон Оренбургской области. Степной бюллетень, 36: 8–12.
Сорокина О.А. 2024. Трансформация плодородия почв залежей лесостепной зоны при различном направлении их использования. Вестник КрасГАУ, 5: 93–100. https://doi.org/10.36718/1819- 4036-2024-5-93-100
Терехин Э.А. 2021. Индикация многолетних изменений в растительном покрове залежных земель лесостепи на основе рядов вегетационного индекса NDVI. Компьютерная оптика, 45(2): 245–252. https://doi.org/10.18287/2412-6179-CO-797
Терехин Э.А. 2022. Оценка процессов лесовозобновления на залежах европейской территории России с использованием многолетних изменений спектрально-отражательных характеристик. Современные проблемы дистанционного зондирования Земли из космоса, 19(3): 233–244. https://doi.org/10.21046/2070-7401-2022-19-3-233-244
Черкасов Г.Н., Сосов Н.А. 2017. Приемы создания высокоурожайных сенокосов на залежных землях склонов в Центральном Черноземье. Достижения науки и техники АПК, 31(5): 13–15. Широких П.С., Федоров Н.И., Туктамышев И.Р., Бикбаев И.Г., Мартыненко В.Г. 2023. Закономерности лесовосстановительных сукцессий на заброшенных сельскохозяйственных землях Башкирского Предуралья. Экология, 3: 179–187. https://doi.org/10.31857/S036705972303006X
Anees S.A., Mehmood K., Rehman A., Rehman N.U., Muhammad S., Shahzad F., Hussain K., Luo M., Alarfaj A.A., Alharbi S.A., Khan W.R. 2024. Unveiling Fractional Vegetation Cover Dynamics: a Spatiotemporal Analysis Using MODIS NDVI and machine learning. Environmental and Sustainability Indicators, 24: 100485. https://doi.org/10.1016/j.indic.2024.100485
Fradette O., Marty C., Faubert P., Dessureault P.-L., Paré M., Bouchard S., Villeneuve C. 2021. Additional Carbon Sequestration Potential of Abandoned Agricultural Land Afforestation in the Boreal Zone: A Modelling Approach. Forest Ecology and Management, 499: 119565. https://doi.org/10.1016/j.foreco.2021.119565
Heck E., de Beurs K.M., Owsley B.C., Henebry G.M. 2019. Evaluation of the MODIS Collections 5 and 6 for Change Analysis of Vegetation and Land Surface Temperature Dynamics in North and South America. ISPRS Journal of Photogrammetry and Remote Sensing, 156: 121–134. https://doi.org/10.1016/j.isprsjprs.2019.07.011
Justice C.O., Townshend J.R.G., Vermote E.F., Masuoka E., Wolfe R.E., Saleous N., Roy D.P., Morisette
J.T. 2002. An Overview of MODIS Land Data Processing and Product Status. Remote Sensing of Environment, 83(1–2): 3–15. https://doi.org/10.1016/S0034-4257(02)00084-6
Testa S., Soudani K., Boschetti L., Borgogno Mondino E. 2018. MODIS-derived EVI, NDVI and WDRVI Time Series to Estimate Phenological Metrics in French Deciduous Forests. International Journal of Applied Earth Observation and Geoinformation, 64: 132–144. https://doi.org/10.1016/j.jag.2017.08.006
Zhu X., Xiao G., Zhang D., Guo L. 2021. Mapping Abandoned Farmland in China Using Time Series MODIS NDVI. Science of The Total Environment, 755: 142651. https://doi.org/10.1016/j.scitotenv.2020.142651
References
Burluckij V.A., Mazurov V.N., Semeshkina P.S., Kosolapov, V.M. 2021. Production Capabilities and Expoliation of Fallow Lands Plant Communities of Meshchovsky Opolye in the Kaluga Region. Vestnik of the Russian agricultural sciences, 1: 45–52 (in Russian). https://doi.org/10.30850/vrsn/2021/1/45-52
Goleusov P.V., Lisetskii F.N. 2009. Reproduction of Soils in Anthropogenous Landscapes of Forest- Steppe Zone. Moscow, Pabl. GEOS, 210 p. (in Russian).
Danilov D.A., Yakovlev A.A., Krylov I.A. 2023. Formation of Natural Plant Associations on Post- agrogenic Lands. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii, 242: 60–82 (in Russian). https://doi.org/10.21266/2079-4304.2023.242.60-82
Domnina E.A., Adamovich T.A., Timonov A.S., Ashihmina T.Ja. 2022. Monitoring of Overgrowing of Abandoned Agricultural Lands Using High-Resolution Satellite Images. Theoretical and Applied Ecology, 3: 82–89 (in Russian). https://doi.org/10.25750/1995-4301-2022-3-082-089
Ivanov A.I., Ivanova Zh.A., Sokolov I.V. 2020. Secondary Development of Unused Land. Russian Agricultural Sciences, 46(3): 274–278. DOI: 10.3103/S1068367420030076
Karpin V.A., Petrov N.V., Tuyunen A.V. 2017. Regeneration of Forest Phytocoenoses after Various Agricultural Land Use Practices in the Conditions of Middle Taiga Subzone. Siberian Journal of Forest Science, 6: 120–129 (in Russian). https://doi.org/10.15372/SJFS20170610
Levykin S.V., Chibilev A.A., Kochurov B.I., Kazachkov G.V. 2020. To the Strategy of Steppes' Conservation and Restoration and Natural Resource Use in the Area of Post-Virgin Lands. Izvestiya Rossiyskoy akademii nauk. Seriya geograficheskaya, 4: 626–636 (in Russian). https://doi.org/10.31857/S2587556620040093
Lezhnin S.A. 2016. Creating and Updating a Database of Reforestation on Abandoned Agricultural Lands of the Republic of Mari El. Trudy Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Serija: tehnologicheskaja, 4: 16–21 (in Russian).
Medvedev A.A., Telnova N.O., Kudikov A.V. 2019. Highly Detailed Remote Sensing Monitoring of Tree Overgrowth on Abandoned Agricultural Lands. Forest Science Issues, 2(3): 1–12 (in Russian). https://doi.org/10.31509/2658-607X-2019-2-3-1-12
Moskalenko S.V., Bobrovsky M.V. 2012. Forest Herb Colonization in Abandoned Arable Land from the Old-Growth Oak-Dominated Forest (in the Reserve "Kaluzhskie Zaseki"). Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 14(1–5): 1332–1335 (in Russian).
Nechaeva T.V. 2023. Abandoned Lands in Russia: Distribution, Agroecological Status and Perspective Use (a Review). The Journal of Soils and Environment, 6(2): e215 (in Russian). https://doi.org/10.31251/pos.v6i2.215
Ponomareva T.V., Ponomarev E.I., Shishikin A.S., Shvetsov E.G. 2018. Monitoring of Transformation of Postagrogenic Soils in Forest-Steppe Zone During the Process of Reforestation. Geography and Natural Resources, 2: 154–161 (in Russian). https://doi.org/10.21782/GiPR0206-1619-2018-2(154-161)
Rusanov A.M. 2012. Natural Recovery of Agricultural Landscapes in Steppe and Forest-Steppe Zones of Orenburg Province. Stepnoj bjulleten', 36: 8–12 (in Russian).
Sorokina O.A. 2024. Transformation of Fallow Lands Soils Fertility in the Forest-Steppe Zone with Their Use Different Directions. Bulliten KrasGAU, 5: 93–100 (in Russian). https://doi.org/10.36718/1819-4036-2024-5-93-100
Terekhin E.A. 2021. Indication of Long-Term Changes in the Vegetation of Abandoned Agricultural Lands for the Forest-steppe Zone Using NDVI Time Series. Computer Optics, 45(2): 245–252 (in Russian). https://doi.org/10.18287/2412-6179-CO-797
Terekhin E.A. 2022. Estimation of Reforestation on Abandoned Agricultural Lands in European Russia Using Long-Term Changes in Spectral Response. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 19(3): 233–244 (in Russian). https://doi.org/10.21046/2070- 7401-2022-19-3-233-244
Cherkasov G.N., Sosov N.A. 2017. Methods of Creating High-Yield Hayfields on Idle Sloping Lands in the Central Chernozem Area. Achievements of Science and Technology of AIC, 31(5): 13–15 (in Russian).
Shirokikh P.S., Fedorov N.I., Tuktamyshev I.R., Bikbaev I.G., Martynenko V.B. 2023. Patterns of Reforestation Successions on Abandoned Agricultural Lands of the Bashkir Cis-Urals. Èkologiâ, 3: 179–187 (in Russian). https://doi.org/10.31857/S036705972303006X
Anees S.A., Mehmood K., Rehman A., Rehman N.U., Muhammad S., Shahzad F., Hussain K., Luo M., Alarfaj A.A., Alharbi S.A., Khan W.R. 2024. Unveiling Fractional Vegetation Cover Dynamics: a Spatiotemporal Analysis Using MODIS NDVI and machine learning. Environmental and Sustainability Indicators, 24: 100485. https://doi.org/10.1016/j.indic.2024.100485
Fradette O., Marty C., Faubert P., Dessureault P.-L., Paré M., Bouchard S., Villeneuve C. 2021. Additional Carbon Sequestration Potential of Abandoned Agricultural Land Afforestation in the Boreal Zone: A Modelling Approach. Forest Ecology and Management, 499: 119565. https://doi.org/10.1016/j.foreco.2021.119565
Heck E., de Beurs K.M., Owsley B.C., Henebry G.M. 2019. Evaluation of the MODIS Collections 5 and 6 for Change Analysis of Vegetation and Land Surface Temperature Dynamics in North and South America. ISPRS Journal of Photogrammetry and Remote Sensing, 156: 121–134. https://doi.org/10.1016/j.isprsjprs.2019.07.011
Justice C.O., Townshend J.R.G., Vermote E.F., Masuoka E., Wolfe R.E., Saleous N., Roy D.P., Morisette
J.T. 2002. An Overview of MODIS Land Data Processing and Product Status. Remote Sensing of Environment, 83(1–2): 3–15. https://doi.org/10.1016/S0034-4257(02)00084-6
Testa S., Soudani K., Boschetti L., Borgogno Mondino E. 2018. MODIS-derived EVI, NDVI and WDRVI Time Series to Estimate Phenological Metrics in French Deciduous Forests. International Journal of Applied Earth Observation and Geoinformation, 64: 132–144. https://doi.org/10.1016/j.jag.2017.08.006
Zhu X., Xiao G., Zhang D., Guo L. 2021. Mapping Abandoned Farmland in China Using Time Series MODIS NDVI. Science of The Total Environment, 755: 142651. https://doi.org/10.1016/j.scitotenv.2020.142651
Abstract views: 107
Share
Published
How to Cite
Issue
Section
Copyright (c) 2025 Regional Geosystems

This work is licensed under a Creative Commons Attribution 4.0 International License.
