Polyelemental Pollution of Soils under the Aerotechnogenic Impact of Novocherkassk State District Power Plant

Authors

  • Elizaveta Yu. Konstantinova Southern Federal University
  • Viktor A. Chaplygin Southern Federal University
  • Saglara S. Mandzhieva Southern Federal University
  • Natalia P. Chernikova Southern Federal University
  • Tatiana M. Minkina Southern Federal University

DOI:

https://doi.org/10.52575/2712-7443-2025-49-3-420-433

Keywords:

potentially toxic elements, trace elements, pollution assessment, geoaccumulation index, Nemerov pollution index, thermal power plant, Rostov Region

Abstract

Thermal power plants are a significant source of pollutant emissions, including heavy metals and metalloids (HMs). This paper presents an assessment of individual and total HM pollution of anthropogenically modified soils in the Novocherkassk State District Power Plant (NGRES) impact zone (Rostov Region, Russia). A comparative analysis of the results of soil pollution classification was performed applying the parameters widely used in domestic and foreign environmental monitoring practices: geoaccumulation index (Igeo) and concentration coefficient (Kc), total pollution index (Zc), modified complex total pollution index (Zct(g)), and Nemerov pollution index (NPI). The findings show that according to Kc, the priority pollutants of soils in the NGRES impact zone are Ni, Cu, Zn, Pb, Cd and As, while according to Igeo, only the last three elements pose a significant hazard. The maximum values of Zc and Zct(g) reach 21 and 27, respectively, which characterizes moderately dangerous total soil pollution, whereas according to NPI, an area of dangerous pollution has been identified in the impact zone of NGRES. The results obtained confirm the presence of aerotechnogenic impact of the thermal power plant on adjacent territories, at the same time, negative effects in the form of pronounced soil pollution with heavy metals appear within a radius of three km from the source.

Acknowledgements: The study was supported by the Russian Science Foundation grant No. 22-77- 10097, https://rscf.ru/project/22-77-10097/

Downloads

Download data is not yet available.

Author Biographies

Elizaveta Yu. Konstantinova, Southern Federal University

Candidate of Geographical Sciences, Senior Researcher of the Frontier Laboratory "Rhizosphere Bioengineering", D.I. Ivanovsky Academy of Biology, Southern Federal University, Rostov-on-Don, Russia

E-mail: kons@sfedu.ru

Viktor A. Chaplygin, Southern Federal University

Candidate of Biological Sciences, Leading Researcher of the Research Laboratory for Biosphere Monitoring, D.I. Ivanovsky Academy of Biology, Southern Federal University, Rostov-on-Don, Russia

E-mail: chaplygin@sfedu.ru

Saglara S. Mandzhieva, Southern Federal University

Candidate of Biological Sciences, Chief Researcher of the Research Laboratory of Biosphere Monitoring, D.I. Ivanovsky Academy of Biology, Southern Federal University, Rostov-on-Don, Russia

E-mail: msaglara@sfedu.ru

Natalia P. Chernikova, Southern Federal University

Postgraduate student, junior researcher at the laboratory "Agrobiotechnology for Improving Soil Fertility and Quality of Agricultural Products", D.I. Ivanovsky Academy of Biology, Southern Federal University, Rostov-on-Don, Russia

E-mail: nchernikova@sfedu.ru

Tatiana M. Minkina, Southern Federal University

Doctor of Biological Sciences, Professor, Head of the Department of Soil Science and Land Resources Assessment, D.I. Ivanovsky Academy of Biology, Southern Federal University, Rostov-on-Don, Russia

E-mail: minkina@sfedu.ru

References

Список источников

M-049-ПДО/18. Методика измерений массовой доли металлов и оксидов металлов в порошковых пробах почв и донных отложений рентгенофлуоресцентным методом. 2018. СПб, ООО «НПО «Спектрон», 18 с.

МУ 2.1.7.730-99 «Гигиеническая оценка качества почвы населенных мест» (утв. Главным государственным санитарным врачом РФ 7 февраля 1999 г.). 1999. М., Информационно- издательский центр Минздрава России, 18 c.

СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (ред. от 30.12.2022). Электронный ресурс. URL: http://pravo.gov.ru/proxy/ips/?docbody=&prevDoc=603138049&backlink=1&&nd=602092088 (дата обращения 27.02.2025).

Экологический вестник Дона «О состоянии окружающей среды и природных ресурсов Ростовской области в 2023 году». 2024. Ростов-на-Дону, Министерство природных ресурсов и экологии Ростовской области, 369 с.

Список литературы

Будина Т.С., Курбанов Н.Х., Прокофьева Л.М., Шийко В.Г. 2021. Учет промышленных отходов на примере золошлаковых отвалов. Экономика и управление: проблемы, решения, 4(4(112)): 182–188. https://doi.org/ 10.36871/ek.up.p.r.2021.04.04.033.

Бушумов С.А., Короткова Т.Г., Сай Ю.В. 2016. Технологические стадии производства и техногенные отходы Новочеркасской ГРЭС. Электронный сетевой политематический журнал «Научные труды КУБГТУ», 13: 25–34.

Водяницкий Ю.Н. 2010. Формулы оценки суммарного загрязнения почв тяжелыми металлами и металлоидами. Почвоведение, 10: 1276–1280.

Гаретова Л.А., Имранова Е.Л., Кириенко О.А., Фишер Н.К., Кошельков А.М. 2023. Oценка состояния воды, почв и донных отложений территории, сопряженной с бывшим золоотвалом. Экология и промышленность России, 27(2): 60–66. https://doi.org/10.18412/1816-0395-2023-2-60-66

Журавлева М.А., Зубрев Н.И., Кокин С.М. 2023. Сравнение вкладов тепловой станции и железной дороги в загрязнение почвы тяжелыми металлами. Наука и техника транспорта, 3: 106–110.

Касимов Н.С., Власов Д.В. 2012. Технофильность химических элементов в начале XXI века. Вестник Московского университета. Серия 5. География, 1: 15–22.

Касимов Н.С., Власов Д.В. 2015. Кларки химических элементов как эталоны сравнения в экогеохимии. Вестник Московского университета. Серия 5: География, 2: 7–17.

Ковалева Е.В., Матвеенко Т.И., Вагурин И.Ю., Кузьмина О.С. 2020. Воздействия золоотвалов теплоэлектростанций на окружающую среду в черте пригородных зон. Polish Journal of Science, 28–1(28): 11–21.

Коротченко И.С., Первышина Г.Г., Мучкина Е.Я. 2020. Воздействие процесса сжигания углей Ирша-Бородинского разреза на депонирование тяжелых металлов в почве (на примере Минусинской ТЭЦ). Уголь, 6(1131): 67–69. https://doi.org/10.18796/0041-5790-2020-6-67-69

Лисецкий Ф.Н., Зеленская Е.Я. 2023. Различия в содержании тяжелых металлов в почвах Южного берега Крыма (пространственно-временной анализ). Экосистемы, 34: 81–91.

Насонкина Н.Г., Антоненко С.Е., Забурдаев В.С., Соколов Д.Г. 2024. Системный подход к оценке экологического воздействия отходов ТЭС ДНР на окружающую среду. Вестник Донбасской национальной академии строительства и архитектуры, 2024-5(169): 96–104. https://doi.org/10.71536/vd.2024.5c169.12

Сычева Д.Г., Кошелева Н.Е. 2023. Эколого-геохимическое состояние почвенного покрова г. Гусиноозерска в зоне влияния угольной ГРЭС. Почвоведение, 8: 953–969. https://doi.org/10.31857/S0032180X23600270

Сычева Д.Г., Кошелева Н.Е. 2024. Источники, уровни накопления и экологическая опасность тяжелых металлов и металлоидов в почвах и фракции PM10 г. Северобайкальска. Известия Томского политехнического университета. Инжиниринг георесурсов, 335(3): 137–153. https://doi.org/10.18799/24131830/2024/3/4259

Федорец Н.Г., Бахмет О.Н., Медведева М.В., Ахметова Г.В., Новиков С.Г., Ткаченко Ю.Н., Солодовников А.Н. 2015. Тяжелые металлы в почвах Карелии. Петрозаводск, Карельский научный центр РАН, 222 с.

Федорова Н.В., Шафорост Д.А. 2015. Перспективы использования золы-уноса тепловых электростанций Ростовской области. Теплоэнергетика, 1: 53–58. https://doi.org/10.1134/S0040363615010038

Чаплыгин В.А., Бурачевская М.В., Минкина Т.М., Манджиева С.С., Сиромля Т.И., Черникова Н.П., Дудникова Т.С. 2024. Особенности накопления и распределения тяжелых металлов в почвах и лекарственных растениях импактной зоны Новочеркасской ГРЭС. Почвоведение, 10: 1424–1438. https://doi.org/10.31857/S0032180X24100116

Guercio V., Doutsi A., Exley K.S. 2022. A Systematic Review on Solid Fuel Combustion Exposure and Respiratory Health in Adults in Europe, USA, Canada, Australia and New Zealand. International Journal of Hygiene and Environmental Health, 241: 113926.

https://doi.org/10.1016/j.ijheh.2022.113926

Kabata-Pendias A. 2011. Trace Elements in soils and Plant. Boca Raton, CRC Press, 505 p.

Konstantinov A., Konstantinova E., Novoselov A., Kurasova A., Shuvaev E., Sherstnev A., Zaitseva V., Minkina T. 2024. Geochemical Status of Non-Reclaimed Ash Dumps Subjected to Long-Term Self-Overgrowing: Evidence from the Tyumen, Russia. Journal of Geochemical Exploration, 258: 107387. https://doi.org/10.1016/j.gexplo.2024.107387

Kowalska J.B., Mazurek R., Gasiorek M., Zaleski T. 2018. Pollution Indices as Useful Tools for the Comprehensive Evaluation of the Degree of Soil Contamination–A Review. Environmental Geochemistry and Health, 40: 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

Linnik V.G., Minkina T.M., Bauer T.V., Saveliev A.A., Mandzhieva S.S. 2020. Geochemical Assessment and Spatial Analysis of Heavy Metals Pollution Around Coal-Fired Power Station. Environmental Geochemistry and Health, 42: 4087–4100. https://doi.org/10.1007/s10653-019-00361-z

Lobzenko I., Konstantinova E., Bauer T., Mandzhieva S., Sushkova S., Chaplygin V., Burachevskaya M., Minkina T., Kravcova N., Kalinichenko V. 2020. Assessment of Health Risks Associated with Soil Contamination by Heavy Metal in an Impact Area of Novocherkassk Power Plant. IOP Conference Series: Earth and Environmental Science, 578: 012020. https://doi.org/10.1088/1755- 1315/578/1/012020

Minkina T., Konstantinova E., Bauer T., Mandzhieva S., Sushkova S., Chaplygin V., Burachevskaya M., Nazarenko O., Kizilkaya R., Gülser C., Maksimov A. 2021. Environmental and Human Health Risk Assessment of Potentially Toxic Elements in Soils Around the Largest Coal-Fired Power Station in Southern Russia. Environmental Geochemistry and Health, 43: 2285–2300. https://doi.org/10.1007/s10653-020-00666-4

Mor S., Vig N., Ravindra K. 2022. Distribution of Heavy Metals in Surface Soil Near a Coal Power Production Unit: Potential Risk to Ecology and Human Health. Environmental Monitoring and Assessment, 194: 263. https://doi.org/10.1007/s10661-021-09692-w

Müller G. 1986. Schadstoffe in Sedimenten – Sedimente Als Schadstoffe. Mitteilungen der Österreichischen Geologischen Gesellschaft, 79: 107–126.

Parlak M., Taş İ., Görgişen C., Gökalp Z. 2023. Spatial Distribution and Health Risk Assessment for Heavy Metals of the Soils Around Coal-Fired Power Plants of Northwest Turkey. International Journal of Environmental Analytical Chemistry, 104(20): 9708–9722. https://doi.org/10.1080/03067319.2023.2243231

Rudnick R.L., Gao S. 2014. Composition of the Continental Crust. Treatise on geochemistry. Second Edition. Vol. 4: The Crust. Elsevier Science: 1–51.

References

Budina T.S., Kurbanov N.Kh., Prokofieva L.M., Shiyko V.G. Industrial Waste Accounting on Example Ash Dumps. Ekonomika i upravlenie: problemy, resheniya, 4(4(112)): 182–188 (in Russian). https://doi.org/ 10.36871/ek.up.p.r.2021.04.04.033.

Bushumov S.A., Korotkova T.G., Say Yu.V. 2016. Technological stage of production and technogenic waste Novocherkassk SDPP. Scientific Works of KUBSTU, 13: 25–34 (in Russian).

Vodyanitskii Y.N. 2010. Equations for Assessing the Total Contamination of Soils with Heavy Metals and Metalloids. Eurasian Soil Science, 43(10): 1184–1188 (in Russian). https://doi.org/10.1134/S106422931010011X

Garetova L.A., Imranova E.L., Kirienko O.A., Fisher N.K., Koshelkov A.M. 2023. Assessment of the State of Water, Soil and Bottom Sediments of the Territory Adjacent to the Former Ash-disposal Area. Ecology and Industry of Russia, 27(2): 60-66 (in Russian). https://doi.org/10.18412/1816-0395-2023-2-60-66

Zhuravleva M.A., Zubrev N.I., Kokin S.M. 2023. Comparison of Thermal Plant and Railway Influence to Heavy Metal Soil Pollution. Science and Technology in Transport, 3: 106–110 (in Russian).

Kasimov N.S., Vlasov D.V. 2012. Technophilia of chemical elements in the beginning of the 21st century. Moscow University Bulletin. Series 5, Geography, 1: 15–22 (in Russian).

Kasimov N.S., Vlasov D.V. 2015. Clarkes of chemical elements as comparison standards in ecogeochemistry. Moscow University Bulletin. Series 5, Geography, 2: 7–17 (in Russian).

Kovalyova E., Matveenko T., Vagurin I., Kuzmina O. 2020. Impact of Ash and Slag Landfills of Thermal Power Plants on Atmospheric Air, Soils and Plants. Polish Journal of Science, 28–1(28): 11–21 (in Russian).

Korotchenko I.S., Pervyshina G.G., Muchkina E.Ya. 2020. Impact of the Coal Burning Process of the Irsha-Borodinsky Open-Pit Mine on the Deposition of Heavy Metals in Soil (for Example, Minusinskaya CHP). Ugol’, 6(1131): 67–69 (in Russian). https://doi.org/10.18796/0041-5790- 2020-6-67-69

Lisetskii F.N., Zelenskaya E.Ya. 2023. Differences in the Content of Heavy Metals in the Soils of the Southern Coast of Crimea (Spatio-Temporal Analysis). Ekosistemy, 34: 81–91 (in Russian).

Nasonkina N.G., Antonenko S.Ye., Zaburdaiev V.S., Sokolov D.G. 2024. System Approach to Assessing the Environmental Impact of Heat and Power Stations Waste on the Environment in the DPR. Proceeding of the Donbas National Academy of Civil Engineering and Architecture. Engineering systems and technological safety, 2024-5(169): 96–104 (in Russian). https://doi.org/10.71536/vd.2024.5c169.12

Sycheva D.G., Kosheleva N.E. 2023. Ecological and Geochemical State of the Soil Cover of Gusinoozersk in the Impact Zone of Coal Thermal Power Plant. Eurasian Soil Science, 56(8): 1114–1129 (in Russian). https://doi.org/ 10.1134/s1064229323600896

Sycheva D.G., Kosheleva N.E. 2024. Sources, Accumulation Levels and Environmental Hazard of Heavy Metals and Metalloids in Soils and PM10 Fractions of Severobaykalsk. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 335(3): 137–153 (in Russian). https://doi.org/10.18799/24131830/2024/3/4259

Fedorets N.G., Bakhmet O.N., Medvedeva M.V., Novikov S.G., Tkachenko Yu.N., Solodovnikov A.N. 2015. Heavy Metals in Soils of Karelia. Petrozavodsk, Pabl. Karelskiy nauchnyy tsentr RAN, 222 p. (in Russian).

Fedorova N.V., Shaforost D.A. 2015. Prospects for Using the Fly Ash Produced at Thermal Power Plants in the Rostov Region. Thermal Engineering, 62(1): 51–57 (in Russian). https://doi.org/10.1134/S0040601515010036

Chaplygin V.A., Burachevskay M.V., Minkina T.M., Mandzhieva S.S., Siromlya T.I., Chernikova N.P., Dudnikova T.S. 2024. Accumulation and Distribution of Heavy Metals in Soils and Medicinal Plants in the Impact Zone of Novocherkassk Power Station. Eurasian Soil Science, 57: 1746–1758. https://doi.org/10.1134/S1064229324601501

Guercio V., Doutsi A., Exley K.S. 2022. A Systematic Review on Solid Fuel Combustion Exposure and Respiratory Health in Adults in Europe, USA, Canada, Australia and New Zealand. International Journal of Hygiene and Environmental Health, 241: 113926. https://doi.org/10.1016/j.ijheh.2022.113926

Kabata-Pendias A. 2011. Trace Elements in soils and Plant. Boca Raton, CRC Press, 505 p.

Konstantinov A., Konstantinova E., Novoselov A., Kurasova A., Shuvaev E., Sherstnev A., Zaitseva V., Minkina T. 2024. Geochemical Status of Non-Reclaimed Ash Dumps Subjected to Long-Term Self-Overgrowing: Evidence from the Tyumen, Russia. Journal of Geochemical Exploration, 258: 107387. https://doi.org/10.1016/j.gexplo.2024.107387

Kowalska J.B., Mazurek R., Gasiorek M., Zaleski T. 2018. Pollution Indices as Useful Tools for the Comprehensive Evaluation of the Degree of Soil Contamination–A Review. Environmental Geochemistry and Health, 40: 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

Linnik V.G., Minkina T.M., Bauer T.V., Saveliev A.A., Mandzhieva S.S. 2020. Geochemical Assessment and Spatial Analysis of Heavy Metals Pollution Around Coal-Fired Power Station. Environmental Geochemistry and Health, 42: 4087–4100. https://doi.org/10.1007/s10653-019-00361-z

Lobzenko I., Konstantinova E., Bauer T., Mandzhieva S., Sushkova S., Chaplygin V., Burachevskaya M., Minkina T., Kravcova N., Kalinichenko V. 2020. Assessment of Health Risks Associated with Soil Contamination by Heavy Metal in an Impact Area of Novocherkassk Power Plant. IOP Conference Series: Earth and Environmental Science, 578: 012020. https://doi.org/10.1088/1755- 1315/578/1/012020

Minkina T., Konstantinova E., Bauer T., Mandzhieva S., Sushkova S., Chaplygin V., Burachevskaya M., Nazarenko O., Kizilkaya R., Gülser C., Maksimov A. 2021. Environmental and Human Health Risk Assessment of Potentially Toxic Elements in Soils Around the Largest Coal-Fired Power Station in Southern Russia. Environmental Geochemistry and Health, 43: 2285–2300. https://doi.org/10.1007/s10653-020-00666-4

Mor S., Vig N., Ravindra K. 2022. Distribution of Heavy Metals in Surface Soil Near a Coal Power Production Unit: Potential Risk to Ecology and Human Health. Environmental Monitoring and Assessment, 194: 263. https://doi.org/10.1007/s10661-021-09692-w

Müller G. 1986. Schadstoffe in Sedimenten – Sedimente Als Schadstoffe. Mitteilungen der Österreichischen Geologischen Gesellschaft, 79: 107–126.

Parlak M., Taş İ., Görgişen C., Gökalp Z. 2023. Spatial Distribution and Health Risk Assessment for Heavy Metals of the Soils Around Coal-Fired Power Plants of Northwest Turkey. International Journal of Environmental Analytical Chemistry, 104(20): 9708–9722. https://doi.org/10.1080/03067319.2023.2243231

Rudnick R.L., Gao S. 2014. Composition of the Continental Crust. Treatise on geochemistry. Second Edition. Vol. 4: The Crust. Elsevier Science: 1–51.


Abstract views: 81

Share

Published

2025-09-30

How to Cite

Konstantinova, E. Y., Chaplygin, V. A., Mandzhieva, S. S., Chernikova, N. P., & Minkina, T. M. (2025). Polyelemental Pollution of Soils under the Aerotechnogenic Impact of Novocherkassk State District Power Plant. Regional Geosystems, 49(3), 420-433. https://doi.org/10.52575/2712-7443-2025-49-3-420-433

Issue

Section

Structure and funktioning of regional geosystems

Most read articles by the same author(s)