Ecological Assessment of Urbogenic Soils in the City of Voronezh
DOI:
https://doi.org/10.52575/2712-7443-2025-49-2-389-400Keywords:
urbanized territories, environmental quality, atmospheric air, drinking water, anthropogenic pollutantsAbstract
The purpose of the study is an ecological and hygienic assessment of the soils of the urbocenoses in Voronezh in terms of the highest priority ecotoxicants content. Thirteen sites for sampling the upper layers of urbogenic soils were selected in the city, along with one protected area as a comparison sample. The content of total and labile forms of the main toxic elements (mercury, cadmium, lead, arsenic, nickel, zinc, cobalt, chromium, and copper) was determined by the atomic absorption method. Residual organochlorine pesticides were determined by gas chromatography. The study revealed areas typically contaminated with some elements in the upper layers of soil and showed that the region’s urbocenoses did not contain residual organochlorine pesticides. The most significant limiting indicator of the quality of the soils under study was the content of labile copper forms – an excess of the maximum permissible standards for this indicator was found in 57 % of the samples, which can be associated with insufficient efficiency of cleaning industry and vehicle emissions into the atmosphere, as well as with a low humus content in urbanized soils, and, as a result, a low metal fixation capacity.
Acknowledgements: This study was carried out with financial support of the Russian Science Foundation, project No. 24-27-00272, https://rscf.ru/project/24-27-00272/.
Downloads
References
Список источников
Доклад «О состоянии санитарно-эпидемиологического благополучия населения в Воронежской области в 2023 году». 2024. Воронеж, Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Воронежской области, 199 с. Электронный ресурс.URL: https://36.rospotrebnadzor.ru/download/dokl_seb_2023.pdf (дата обращения: 20.01.2025).
СанПин 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания». 2021. М., 988 с. Электронный ресурс.URL: https://docs.cntd.ru/document/573500115 (дата обращения: 08.12.2024).
Строительные онлайн калькуляторы Stroydocs.com. Построение розы ветров для городов России, Воронежская область, город Воронеж, 2025. Электронный ресурс.URL: https://stroydocs.com/info/e_veter (дата обращения: 08.04.2025).
Список литературы
Алексеенко В.А., Алексеенко А.В. 2014. Химические элементы в городских почвах. М., Логос, 312 с.
Дьякова Н.А. 2022. Экологическая оценка сырьевых ресурсов лекарственных растений Воронежской области. Воронеж, Цифровая полиграфия, 264 с.
Дьякова Н.А., Епринцев С.А., Клепиков О.В., Виноградов П.М. 2024. Эколого-гигиеническая оценка верхних слоев почв антропогенно нарушенных территорий средней полосы России по содержанию подвижных форм тяжелых металлов. Грозненский естественнонаучный бюллетень, 2(36): 19–26. https://doi.org/10.25744/genb.2024.10.32.003
Епринцев С.А. 2022. Геоинформационно-аналитическая оценка экологической безопасности городов Центрально-Черноземного региона. Региональные геосистемы, 46(3): 398–409. https://doi.org/10.52575/2712-7443-2022-46-3-398-409
Куролап С.А., Мамчик Н.П., Клепиков О.В. 2010. Медико-экологический атлас Воронежской области. Воронеж, ГУП ВО «Воронежская. областная типография – издательство им. Е.А. Болховитинова», 167 с.
Лопатина Д.Н. 2024. Фитотоксичность городских почв Иркутска и Ангарска. Региональные геосистемы, 48(1): 106–117. https://doi.org/10.52575/2712-7443-2024-48-1-106-117
Малюга Д.П. 1963. Биогеохимический метод поисков рудных месторождений. Ленинград, АН СССР, 264 с.
Новых Л.Л., Елисеева Н.В., Слюсаренко Э.Е. 2024. Геоэкологическая оценка состояния почв сельскохозяйственных ландшафтов: перспективные подходы и показатели. Региональные геосистемы, 48(3): 441–452. https://doi.org/10.52575/2712-7443-2024-48-3-441-452
Плахов Г.А., Безуглова О.С., Тагивердиев С.С., Горбов С.Н. 2023. Взаимосвязь свинца, цинка и меди с органическим веществом и карбонатами в городских почвах (на примере Ростова-на-Дону). АгроЭкоИнфо, 4(58): 419. https://doi.org/10.51419/202134419
Побилат А.Е., Волошин Е.И. 2021. Микроэлементы в сельскохозяйственных растениях (обзор). Микроэлементы в медицине, 22(3): 3–14. https://doi.org/10.19112/2413-6174-2021-22-3-3-14
Полетаев А.О., Севрюков И.С. 2024. Пространственное распределение тяжелых металлов и мышьяка в почвах вблизи горнопромышленных предприятий. Региональные геосистемы, 48(3): 453-465. https://doi.org/10.52575/2712-7443-2024-48-3-453-465
Allen R.W., Barn P. 2020. Individual and Household-Level Interventions to reduce air pollution exposures and Health Risks: a Review of the Resent Literature. Current Environmental Health Reports, 7(4): 424–440. https://doi.org/10.1007/s40572-020-00296-z.
Goleusov P., Malyshev A. 2021. Resource Characteristics of Post-Agrogenic Chernozems in Multiple-Aged Fallow Lands of the Belgorod Region. In: Steppes of Northern Eurasia. Ninth International Symposium, 7–11 June 2021, Orenburg, Series: Earth and Environmental Science, 817(1): 012036. https://doi.org/10.1088/1755-1315/817/1/012036
Hansen M.C., Potapov P.V., Pickens A.H., Tyukavina A., Hernandez-Serna A., Zalles V., Turubanova S., Kommareddy I., Stehman S.V., X-P Song. 2022. Global Land Use Extent and Dispersion within Natural Land Cover Using Landsat Data. Environmental Research Letters, 17(3): 034050. https://doi.org/10.1088/1748-9326/ac46ec
Kiaei R., Pardakhti A., Zahed M.A. 2024. The Role of Health Risk Assessment Techniques in Controlling Air Pollution: a Mini Review. Health Nexus, 2(3): 60–70. https://doi.org/10.61838/kman.hn.2.3.8.
Myeong S., Shahzad Kh. 2021. Integrating Data-Based Strategies and Advanced Technologies with Efficient Air Pollution Management in Smart Cities. Sustainability, 13(13): 7168. https://doi.org/10.3390/su13137168.
Novykh L., Eliseeva N., Voloshenko I., Solovyov A., Slyusarenko E. 2021. Features of the Structural-Aggregate Composition of Chernozems in Different Ecological Conditions. In: SGEM International Multidisciplinary Scientific GeoConference. 21st International Multidisciplinary Scientific GeoConference SGEM, Bulgaria, 16–22 August 2021. Bulgaria, Albena, 3.1: 465–472. https://doi.org/10.5593/sgem2021/3.1/s13.59
Yang S., Sun L., Sun Y., Song K., Qin Q., Zhu Z., Xue Y. 2023. Towards an Integrated Health Risk Assessment Framework of Soil Heavy Metals Pollution: Theoretical Basis, Conceptual Model, and Perspectives. Environmental Pollution, 316(2): 120596. https://doi.org/10.1016/j.envpol.2022.120596
Zhou H., Yue X., Chen Y., Liu Y. 2024. Source-Specific Probabilistic Contamination Risk and Health Risk Assessment of Soil Heavy Metals in a Typical Ancient Mining Area. Science of the Total Environment, 906: 167772. https://doi.org/10.1016/j.scitotenv.2023.167772
References
Alekseenko V.A., Alekseenko A.V. 2014. Chemical Elements in Urban Soils. Moscow, Pabl. Logos, 312 p. (in Russian).
D'yakova N.A. 2022. Ekologicheskaya otsenka syr'evykh resursov lekarstvennykh rasteniy Voronezhskoy oblasti [Environmental Assessment of Raw Materials of Medicinal Plants of the Voronezh Region]. Voronezh, Pabl. Tsifrovaya poligrafiya. 264 р. (in Russian).
D'yakova N.A., Eprintsev S.A., Klepikov O.V., Vinogradov P.M. 2024. Ecological and Hygienic Assessment of the Upper Soil Layers of Anthropologically Disturbed Territories of the Middle Strip of Russia by the Content of Mobile Forms of Heavy Metals. Grozny Natural Science Bulletin, 2(36): 19–26 (in Russian). https://doi.org/10.25744/genb.2024.10.32.003
Yeprintsev S.A. 2022. Geoinformation and Analytical Assessment of Environmental Safety of the Cities of the Central Chernozem Region. Regional Geosystems, 46(3): 398–409 (in Russian). https://doi.org/10.52575/2712-7443-2022-46-3-398-409
Kurolap S.A., Mamchik N.P., Klepikov O.V. 2010. Mediko-ekologicheskiy atlas Voronezh-skoy oblasti [Medical and Ecological Atlas of the Voronezh Region]. Voronezh, Pabl. GUP VO «Voronezhskaya. oblastnaya tipografiya – izdatel'stvo im. E.A. Bolkhovitinova», 167 р.
Lopatina D.N. 2024. Phytotoxicity of Irkutsk and Angarsk Urban Soils. Regional Geosystems, 48(1): 106–117 (in Russian). https://doi.org/10.52575/2712-7443-2024-48-1-106-117
Maljuga D.P. 1963. Biogeohimicheskij metod poiskov rudnyh mestorozhdenij [Biogeochemical Method of Ore Deposit Prospecting]. Leningrad, Pabl. AN SSSR, 264 p.
Novykh L.L., Eliseeva N.V., Slyusarenko E.E. 2024. Geoecological Assessment of Soil Conditions in Agricultural Landscapes: Perspective Approaches and Indicators. Regional Geosystems., 48(3): 441–452 (in Russian). https://doi.org/10.52575/2712-7443-2024-48-3-441-452
Plakhov G.A., Bezuglova O.S., Tagiverdiev S.S., Gorbov S.N. 2023. Interrelation of Lead, Zinc, and Copper with Organic Matter and Carbonates in Urban Soils (a Case Study of Rostov-On-Don). AgroEkoInfo, 4(58): 419 (in Russian). https://doi.org/10.51419/202134419
Pobilat A.E., Voloshin E.I. 2021. Mikrocells in Agricultural Plants (Review). Trace Elements in Medicine, 22(3): 3–14 (in Russian). https://doi.org/10.19112/2413-6174-2021-22-3-3-14
Poletaev A.O., Sevryukov I.S. 2024. Spatial Distribution of Heavy Metals and Arsenic in Soils Near Mining Enterprises. Regional Geosystems, 48(3): 453–465 (in Russian). https://doi.org/10.52575/2712-7443-2024-48-3-453-465
Allen R.W., Barn P. 2020. Individual and Household-Level Interventions to reduce air pollution exposures and Health Risks: a Review of the Resent Literature. Current Environmental Health Reports, 7(4): 424–440. https://doi.org/10.1007/s40572-020-00296-z.
Goleusov P., Malyshev A. 2021. Resource Characteristics of Post-Agrogenic Chernozems in Multiple-Aged Fallow Lands of the Belgorod Region. In: Steppes of Northern Eurasia. Ninth International Symposium, 7–11 June 2021, Orenburg, Series: Earth and Environmental Science, 817(1): 012036. https://doi.org/10.1088/1755-1315/817/1/012036
Hansen M.C., Potapov P.V., Pickens A.H., Tyukavina A., Hernandez-Serna A., Zalles V., Turubanova S., Kommareddy I., Stehman S.V., X-P Song. 2022. Global Land Use Extent and Dispersion within Natural Land Cover Using Landsat Data. Environmental Research Letters, 17(3): 034050. https://doi.org/10.1088/1748-9326/ac46ec
Kiaei R., Pardakhti A., Zahed M.A. 2024. The Role of Health Risk Assessment Techniques in Controlling Air Pollution: a Mini Review. Health Nexus, 2(3): 60–70. https://doi.org/10.61838/kman.hn.2.3.8.
Myeong S., Shahzad Kh. 2021. Integrating Data-Based Strategies and Advanced Technologies with Efficient Air Pollution Management in Smart Cities. Sustainability, 13(13): 7168. https://doi.org/10.3390/su13137168.
Novykh L., Eliseeva N., Voloshenko I., Solovyov A., Slyusarenko E. 2021. Features of the Structural-Aggregate Composition of Chernozems in Different Ecological Conditions. In: SGEM International Multidisciplinary Scientific GeoConference. 21st International Multidisciplinary Scientific GeoConference SGEM, Bulgaria, 16–22 August 2021. Bulgaria, Albena, 3.1: 465–472. https://doi.org/10.5593/sgem2021/3.1/s13.59
Yang S., Sun L., Sun Y., Song K., Qin Q., Zhu Z., Xue Y. 2023. Towards an Integrated Health Risk Assessment Framework of Soil Heavy Metals Pollution: Theoretical Basis, Conceptual Model, and Perspectives. Environmental Pollution, 316(2): 120596. https://doi.org/10.1016/j.envpol.2022.120596
Zhou H., Yue X., Chen Y., Liu Y. 2024. Source-Specific Probabilistic Contamination Risk and Health Risk Assessment of Soil Heavy Metals in a Typical Ancient Mining Area. Science of the Total Environment, 906: 167772. https://doi.org/10.1016/j.scitotenv.2023.167772
Abstract views: 299
Share
Published
How to Cite
Issue
Section
Copyright (c) 2025 Regional Geosystems

This work is licensed under a Creative Commons Attribution 4.0 International License.
