Spatiotemporal Dynamics of Atmospheric Nitrogen Dioxide Concentrations over Northeastern Vietnam

Authors

  • Trung H. Nguyen Voronezh State University
  • Semyon A. Kurolap Voronezh State University
  • Yuriy A. Nesterov Voronezh State University

DOI:

https://doi.org/10.52575/2712-7443-2025-49-2-350-362

Keywords:

Northeast Vietnam, Google Earth Engine, Sentinel-5P TROPOMI, nitrogen dioxide, spatiotemporal analysis

Abstract

The aim of the study is to analyze the spatiotemporal dynamics of nitrogen dioxide (NO2) concentration in the atmosphere of Northeast Vietnam from 2019 to 2024. The study focuses on identifying patterns of air pollution in this area and determining pollution sources to develop recommendations for air quality management and improving resilience to environmental risks. For the analysis, remote sensing (RS) data and geographic information system (GIS) technologies were used. The methodology involved processing NO2 concentration data in the Google Earth Engine environment, which allowed the identification of major trends and periodic fluctuations in pollutant concentration. A series of maps was created using QGIS for the spatiotemporal analysis of NO2 concentration dynamics. The results of the study showed that the NO2 concentration in the atmosphere was highest in areas located at the intersections of the provinces of Quảng Ninh, Hải Phòng, Hải Dương, and Bắc Ninh, Bắc Giang. These regions are centers of economic and industrial activity, characterized by intensive transportation and a high concentration of large industrial enterprises. The observed sharp decrease in nitrogen dioxide levels during 2020 closely correlates with the period of the global crisis caused by the COVID-19 pandemic. At that time, many countries, including Vietnam, implemented measures to restrict industrial processes and regulate vehicular traffic. The analysis of the collected data suggests a direct relationship between NO2 concentrations in the air masses of northeastern Vietnam and the degree of industrial infrastructure development, as well as the density of traffic flows in specific areas. This scientific investigation highlights the necessity of establishing cooperative mechanisms between administrative units to enable effective atmospheric monitoring, implement air quality management systems, and develop strategies to reduce anthropogenic impacts.

Downloads

Download data is not yet available.

Author Biographies

Trung H. Nguyen, Voronezh State University

Postgraduate student at the Department of Geoecology and Environmental Monitoring of the Faculty of Geography, Geoecology and Tourism, Voronezh State University, Voronezh, Russia

E-mail: hieugeo@mail.ru

Semyon A. Kurolap, Voronezh State University

Doctor of Geographical Sciences, Professor, Dean of the Faculty of Geography, Geoecology and Tourism, Voronezh State University, Voronezh, Russia

E-mail: skurolap@mail.ru

Yuriy A. Nesterov, Voronezh State University

Candidate of Geographical Sciences, Associate Professor at the Department of Geoecology and Environmental Monitoring of the Faculty of Geography, Geoecology and Tourism, Voronezh State University, Voronezh, Russia

E-mail: nland58@mail.ru

References

Список источников

Рязанцева А.В., Лукашина Г.В. 2008. Глобальное изменение климата, учебно-методическое пособие. Москва, МГИУ, 76 с.

QCVN "National Technical Regulation on Ambient Air Quality" issued on March 13, 2023, Code QCVN 05:2023/BTNMT. Vietnam Ministry of Natural Resources and Environment, 12 p.

The paradox of bordering administrative areas. SGGP. Электронный ресурс. URL: https://www.sggp.org.vn/nghich-ly-dia-ban-giap-ranh-post224936.html (date of access 18.01.2025)

Список литературы

Гусев А.П., Флерко Т.Г. 2024. Пространственная и сезонная изменчивость содержаний NO2, SO2 и CO над территорией Беларуси. Региональные геосистемы, 48(2): 210–220. https://doi.org/10.52575/2712-7443-2024-48-2-210-220

Логвинов И.А. 2022. Исследования пространственного развития агломераций на основе данных проекта Global Human Settlement Layer (GHSL). В кн.: ГИС-технологии в науках о Земле. Материалы республиканского научно-практического семинара студентов и молодых ученых, Минск, 16 ноября 2022. Минск, Белорусский государственный университет: 12–17.

Морозова А.Э., Сизов О.С., Елагин П.О., Агзамов Н.А. 2022. Интегральная оценка качества атмосферного воздуха в крупнейших городах России на основе данных TROPOMI (Sentinel-5P) за 2019–2020 гг. Современные проблемы дистанционного зондирования Земли из космоса, 19(4): 23–39. https://doi.org/10.21046/2070-7401-2022-19-4-23-39

Ракитин В.С., Груздев А.Н., Кириллова Н.С., Федорова Е.И., Елохов А.С., Сафронов А.Н. 2023. Валидация результатов измерений содержания NO2 в тропосфере и стратосфере с помощью спутникового прибора TROPOMI по наземным измерениям на Звенигородской научной станции Института физики атмосферы им. А.М. Обухова РАН. Оптика атмосферы и океана, 36(1(408)): 32–41. https://doi.org/10.15372/AOO20230105

Царев Ю.В., Рыжкова Е.И. 2023. Разработка облачного приложения для определения содержания формальдегида в атмосферном воздухе по данным спутника Sentinel-5P. Южно-сибирский научный вестник, 6(52): 31–35. https://doi.org/10.25699/SSSB.2023.52.6.050

Behera M.D., Mudi S., Shome P., Das P.K., Kumar S., Joshi A., Rathore A., Deep A., Kumar A., Sanwariya Ch., Kumar N., Chandrakar R., Seshadri S., Mukherjee Sh., Bhattaram Sh.K., Sirivella Z. 2021. COVID-19 Slowdown Induced Improvement in Air Quality in India: Rapid Assessment Using Sentinel-5P TROPOMI Data. Geocarto International, 37(25): 8127–8147. https://doi.org/10.1080/10106049.2021.1993351

Bodah B.W., Neckel A., Maculan L.S., Milanes C.B., Korcelski C., Ramírez O., Mendez-Espinosa J.F., Bodah E.T., Oliveira M.L.S. 2022. Sentinel-5P TROPOMI Satellite Application for NO2 and CO Studies Aiming at Environmental Valuation. Journal of Cleaner Production, 357: 131960. https://doi.org/10.1016/j.jclepro.2022.131960

Chinh L.T.D., Hang H.T., Quynh B.D. 2023. Application of Sentinel-5P TROPOMI Data on the Google Earth Engine Platform for Air Pollution Monitoring in Thai Nguyen City. Journal of Science and Technology in Construction, Hanoi University of Civil Engineering, 17(2V): 78–94.

Ganbat G., Lee H., Jo H.W., Jadamba B., Karthe D. 2022. Assessment of COVID-19 Impacts on Air Quality in Ulaanbaatar, Mongolia, Based on Terrestrial and Sentinel-5P TROPOMI Data. Aerosol and Air Quality Research, 22(10): 220196. https://doi.org/10.4209/aaqr.220196

Kanniah K.D., Zaman N.A.F.K., Perumal K. 2021. Analysis of NO2 Tropospheric Column amount at Airports in Malaysia Before and during COVID-19 Pandemic Using SENTINEL-5P Tropomi Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2021: 399–403. https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-399-2021

Kaplan G., Avdan Z.Y., Avdan U. 2019. Spaceborne Nitrogen Dioxide Observations from the Sentinel-5P TROPOMI over Turkey. Proceedings, 18(1): 4. https://doi.org/10.3390/ECRS-3-06181

Kaplan G., Avdan Z.Y. 2020. Space-Borne Air Pollution Observation from Sentinel-5p TROPOMI: Relationship Between Pollutants, Geographical and Demographic Data. International Journal of Engineering and Geosciences, 5(3): 130–137. https://doi.org/10.26833/ijeg.644089

Kuehn B.M. 2014. WHO: More Than 7 Million Air Pollution Deaths Each Year. JAMA, 311(15): 1486. https://doi.org/10.1001/jama.2014.4031

Liu X., Yi G., Zhou X., Zhang T., Lan Y., Yu D., Wen B., Hu J. 2021. Atmospheric NO2 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of the NO2 Product of TROPOMI/Sentinel-5P. Atmosphere, 12(9): 1142. https://doi.org/10.3390/atmos12091142

Magro C., Nunes L., Gonçalves O., Neng N.R., Nogueira J.M.F., Rego F.C., Vieira P. 2021. Atmospheric Trends of CO and CH4 from Extreme Wildfires in Portugal Using Sentinel-5P TROPOMI Level-2 Data. Fire, 4(2): 25. https://doi.org/10.3390/fire4020025

Maurya N. K., Pandey P. C., Sarkar S., Kumar R., Srivastava P.K. 2022. Spatio-Temporal Monitoring of Atmospheric Pollutants Using Earth Observation Sentinel 5P TROPOMI Data: Impact of Stubble Burning a Case Study. ISPRS International Journal of Geo-Information, 11(5): 301. https://doi.org/10.3390/ijgi11050301

Savenets M. 2021. Air Pollution in Ukraine: a View from the Sentinel-5P satellite. IDŐJÁRÁS Quarterly Journal of the Hungarian Meteorological Service, 125(2): 271–290. https://doi.org/10.28974/idojaras.2021.2.6

Shetty Sh., Schneider Ph., Stebel K., Hamer P.D., Kylling A., Berntsen T.K. 2024. Estimating Surface NO2 Concentrations over Europe Using Sentinel-5P TROPOMI Observations and Machine Learning. Remote Sensing of Environment, 312: 114321. https://doi.org/10.1016/j.rse.2024.114321

Thao D.T.P., Ngo N.V., Son V.K. 2022. Mapping the Distribution of NO₂ and SO₂ Concentrations in the Hanoi Area Using Sentinel-5P Remote Sensing Data. Journal of Surveying and Mapping Science, 54: 46–53.

Van Geffen J., Eskes H., Compernolle S., Pinardi G., Verhoelst T., Lambert J.Ch., Sneep M., Linden M.T., Veefkind J.P. 2022. Sentinel-5P TROPOMI NO2 Retrieval: Impact of Version v2. 2 Improvements and Comparisons with OMI and Ground-Based Data. Atmospheric Measurement Techniques, 15(7): 2037–2060.

Verhoelst T., Compernolle S., Pinardi G., Lambert J.C., Eskes H.J., Eichmann K.U., Fjaeraa A.M., Granville J., Niemeijer S., Cede A., Tiefengraber M., Hendrick F., Pazmino A., Bais A., Bazureau A., Boersma K.F., Bognar K., Dehn A., Donner S., Elokhov A., Gebetsberger M., Goutail F., de La Mora M.G., Gruzdev A., Gratsea M., Hansen G.H., Irie H., Jepsen Nis., Kanaya Y., Karagkiozidis D., Kivi R., Kreher K., Levelt P.F., Liu C., Mueller M., Comas M.N., Piters A.J.M., Pommereau J.P., Portafaix T. Prados-Roman C., Puentedura O., Querel R., Remmers J., Richter A., Rimmer J., Cardenas C.R., de Miguel L.S., Sinyakov V.P., Stremme W., Strong K., Van Roozendael M., Veefkind J.P., Wagner T., Wittrock F., Gonzalez M.Y., Zehner C. 2021. Ground-Based Validation of the Copernicus Sentinel-5P TROPOMI NO2 Measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia Global Networks. Atmospheric Measurement Techniques, 14(1): 481–510. https://doi.org/10.5194/amt-14-481-2021

Vîrghileanu M., Săvulescu I., Mihai B.A., Nistor C., Dobre R. 2020. Nitrogen Dioxide (NO2) Pollution Monitoring with Sentinel-5P Satellite Imagery over Europe during the Coronavirus Pandemic Outbreak. Remote Sensing, 18(1): 3575. https://doi.org/10.3390/rs12213575

References

Gusev A.P., Flerko T.G. 2024. Spatial and Seasonal Variability of NO2, SO2 and CO Contents over the Territory of Belarus. Regional Geosystems, 48(2): 210–220 (in Russian). https://doi.org/10.52575/2712-7443-2024-48-2-210-220

Logvinov I.A. 2022. Issledovaniya prostranstvennogo razvitiya aglomeratsiy na osnove dannykh proekta Global Human Settlement Layer (GHSL) [Research of Spatial Development of Agglomerations Based on data of the Global Human Settlement Layer (GHSL) project]. In: GIS-tekhnologii v naukakh o Zemle [GIS technologies in Earth sciences]. Proceedings of the Republican Scientific and Practical Seminar of Students and Young Scientists, Minsk, 16 November 2022. Minsk, Pabl. Belorusskiy gosudarstvennyy universitet: 12–17.

Morozova A.E., Sizov O.S., Elagin P.O., Agzamov N.A. 2022. Integral Assessment of Atmospheric Air Quality in the Largest Cities of Russia Based on Tropomi (Sentinel-5p) Data for 2019–2020. Current Problems in Remote Sensing of the Earth from Space, 19(4): 23–39 (in Russian). https://doi.org/10.21046/2070-7401-2022-19-4-23-39

Rakitin V.S., Gruzdev A.N., Kirillova N.S., Fedorova E.I., Elokhov A.S., Safronov A.N. 2023. Validation of Results of Measurements of the No2 Contents in the Troposphere and Stratosphere with the Tropomi Satellite Instrument on the Basis of Ground-Based Measurements at the Zvenigorod Scientific Station of A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. Optika Atmosfery i Okeana, 36(1(408)): 32–41 (in Russian). https://doi.org/10.15372/AOO20230105

Tsarev Yu.V., Ryzhkova E.I. 2023. Determination of Formaldehyde Content in the Air of Yaroslavl According to Sentinel-5p Satellite Data. South-Siberian Scientific Bulletin, 6(52): 31–35 (in Russian). https://doi.org/10.25699/SSSB.2023.52.6.050

Behera M.D., Mudi S., Shome P., Das P.K., Kumar S., Joshi A., Rathore A., Deep A., Kumar A., Sanwariya Ch., Kumar N., Chandrakar R., Seshadri S., Mukherjee Sh., Bhattaram Sh.K., Sirivella Z. 2021. COVID-19 Slowdown Induced Improvement in Air Quality in India: Rapid Assessment Using Sentinel-5P TROPOMI Data. Geocarto International, 37(25): 8127–8147. https://doi.org/10.1080/10106049.2021.1993351

Bodah B.W., Neckel A., Maculan L.S., Milanes C.B., Korcelski C., Ramírez O., Mendez-Espinosa J.F., Bodah E.T., Oliveira M.L.S. 2022. Sentinel-5P TROPOMI Satellite Application for NO2 and CO Studies Aiming at Environmental Valuation. Journal of Cleaner Production, 357: 131960. https://doi.org/10.1016/j.jclepro.2022.131960

Chinh L.T.D., Hang H.T., Quynh B.D. 2023. Application of Sentinel-5P TROPOMI Data on the Google Earth Engine Platform for Air Pollution Monitoring in Thai Nguyen City. Journal of Science and Technology in Construction, Hanoi University of Civil Engineering, 17(2V): 78–94.

Ganbat G., Lee H., Jo H.W., Jadamba B., Karthe D. 2022. Assessment of COVID-19 Impacts on Air Quality in Ulaanbaatar, Mongolia, Based on Terrestrial and Sentinel-5P TROPOMI Data. Aerosol and Air Quality Research, 22(10): 220196. https://doi.org/10.4209/aaqr.220196

Kanniah K.D., Zaman N.A.F.K., Perumal K. 2021. Analysis of NO2 Tropospheric Column amount at Airports in Malaysia Before and during COVID-19 Pandemic Using SENTINEL-5P Tropomi Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2021: 399–403. https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-399-2021

Kaplan G., Avdan Z.Y., Avdan U. 2019. Spaceborne Nitrogen Dioxide Observations from the Sentinel-5P TROPOMI over Turkey. Proceedings, 18(1): 4. https://doi.org/10.3390/ECRS-3-06181

Kaplan G., Avdan Z.Y. 2020. Space-Borne Air Pollution Observation from Sentinel-5p TROPOMI: Relationship Between Pollutants, Geographical and Demographic Data. International Journal of Engineering and Geosciences, 5(3): 130–137. https://doi.org/10.26833/ijeg.644089

Kuehn B.M. 2014. WHO: More Than 7 Million Air Pollution Deaths Each Year. JAMA, 311(15): 1486. https://doi.org/10.1001/jama.2014.4031

Liu X., Yi G., Zhou X., Zhang T., Lan Y., Yu D., Wen B., Hu J. 2021. Atmospheric NO2 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of the NO2 Product of TROPOMI/Sentinel-5P. Atmosphere, 12(9): 1142. https://doi.org/10.3390/atmos12091142

Magro C., Nunes L., Gonçalves O., Neng N.R., Nogueira J.M.F., Rego F.C., Vieira P. 2021. Atmospheric Trends of CO and CH4 from Extreme Wildfires in Portugal Using Sentinel-5P TROPOMI Level-2 Data. Fire, 4(2): 25. https://doi.org/10.3390/fire4020025

Maurya N. K., Pandey P. C., Sarkar S., Kumar R., Srivastava P.K. 2022. Spatio-Temporal Monitoring of Atmospheric Pollutants Using Earth Observation Sentinel 5P TROPOMI Data: Impact of Stubble Burning a Case Study. ISPRS International Journal of Geo-Information, 11(5): 301. https://doi.org/10.3390/ijgi11050301

Savenets M. 2021. Air Pollution in Ukraine: a View from the Sentinel-5P satellite. IDŐJÁRÁS Quarterly Journal of the Hungarian Meteorological Service, 125(2): 271–290. https://doi.org/10.28974/idojaras.2021.2.6

Shetty Sh., Schneider Ph., Stebel K., Hamer P.D., Kylling A., Berntsen T.K. 2024. Estimating Surface NO2 Concentrations over Europe Using Sentinel-5P TROPOMI Observations and Machine Learning. Remote Sensing of Environment, 312: 114321. https://doi.org/10.1016/j.rse.2024.114321

Thao D.T.P., Ngo N.V., Son V.K. 2022. Mapping the Distribution of NO₂ and SO₂ Concentrations in the Hanoi Area Using Sentinel-5P Remote Sensing Data. Journal of Surveying and Mapping Science, 54: 46–53.

Van Geffen J., Eskes H., Compernolle S., Pinardi G., Verhoelst T., Lambert J.Ch., Sneep M., Linden M.T., Veefkind J.P. 2022. Sentinel-5P TROPOMI NO2 Retrieval: Impact of Version v2. 2 Improvements and Comparisons with OMI and Ground-Based Data. Atmospheric Measurement Techniques, 15(7): 2037–2060.

Verhoelst T., Compernolle S., Pinardi G., Lambert J.C., Eskes H.J., Eichmann K.U., Fjaeraa A.M., Granville J., Niemeijer S., Cede A., Tiefengraber M., Hendrick F., Pazmino A., Bais A., Bazureau A., Boersma K.F., Bognar K., Dehn A., Donner S., Elokhov A., Gebetsberger M., Goutail F., de La Mora M.G., Gruzdev A., Gratsea M., Hansen G.H., Irie H., Jepsen Nis., Kanaya Y., Karagkiozidis D., Kivi R., Kreher K., Levelt P.F., Liu C., Mueller M., Comas M.N., Piters A.J.M., Pommereau J.P., Portafaix T. Prados-Roman C., Puentedura O., Querel R., Remmers J., Richter A., Rimmer J., Cardenas C.R., de Miguel L.S., Sinyakov V.P., Stremme W., Strong K., Van Roozendael M., Veefkind J.P., Wagner T., Wittrock F., Gonzalez M.Y., Zehner C. 2021. Ground-Based Validation of the Copernicus Sentinel-5P TROPOMI NO2 Measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia Global Networks. Atmospheric Measurement Techniques, 14(1): 481–510. https://doi.org/10.5194/amt-14-481-2021

Vîrghileanu M., Săvulescu I., Mihai B.A., Nistor C., Dobre R. 2020. Nitrogen Dioxide (NO2) Pollution Monitoring with Sentinel-5P Satellite Imagery over Europe during the Coronavirus Pandemic Outbreak. Remote Sensing, 18(1): 3575. https://doi.org/10.3390/rs12213575


Abstract views: 300

Share

Published

2025-06-30

How to Cite

Nguyen, T. H., Kurolap, S. A., & Nesterov, Y. A. (2025). Spatiotemporal Dynamics of Atmospheric Nitrogen Dioxide Concentrations over Northeastern Vietnam. Regional Geosystems, 49(2), 350-362. https://doi.org/10.52575/2712-7443-2025-49-2-350-362

Issue

Section

Earth Sciences