Assessment of Post-Fire Vegetation Dynamics in a Raised Bog (Western Siberia) Based on Landsat Satellite Data
DOI:
https://doi.org/10.52575/2712-7443-2025-49-1-112-127Keywords:
wildfire, Great Vasyugan mire, NBR, NDWI, geobotanical research, Tomsk regionAbstract
Wildfires are an important factor in the transformation of mire ecosystems, and their effects persist for a long time. Despite the fact that mires drying up during prolonged droughts are among natural sites with an increased fire risk, there has been little research on fire consequences and post-fire restoration of burnt-out areas within mires using satellite data. The article presents the results of an assessment of the post-fire vegetation restoration of a site in the Great Vasyugan mire that burned out in 2016, based on Landsat data and geobotanical field research materials. The authors analyze the temporal dynamics of the NBR, NDWI indices and their difference indicators for eight years after the fire for sites with different intensity of pyrogenic load and reveal the interrelationships with the characteristics of vegetation cover. It has been found that the NBR index better reflects the degree of pyrogenic load, and the NDWI shows the post-fire restoration of mire vegetation. The indices considered have high coefficients of determination with projective cover of trees, NBR and dNBR reflect the projective cover of dwarf shrubs and the proportion of open surfaces better than NDWI, while dNBR and dNDWI perform better in respect to the projective cover of sphagnum mosses. The first two to four years after the fire were characterized by a high growth rate of both indices, as open land was rapidly covered by dwarf shrubs, then the growth of the indices slowed down. The projected recovery of index values while maintaining current growth rates will occur by 2028–2030, that is, 12–14 years after the fire. After that, the growth of the indices is likely to continue and will reflect an increase in the projective cover of deciduous trees instead of pines. The revealed correlations of the NBR and NDWI indices with the characteristics of vegetation cover based on the example of a key site will be used to assess the state of burnt-out raised bog in vast areas.
Acknowledgements: The research was financially supported by the Russian Science Foundation, project no. 22-77-10024.
Downloads
References
Список литературы
Барталев С.А., Стыценко Ф.В., Егоров В.А., Лупян Е.А. 2015. Спутниковая оценка гибели лесов России от пожаров. Лесоведение, 2: 83–94.
Бондур В.Г., Цидилина М.Н., Черепанова Е.В. 2019. Космический мониторинг воздействия природных пожаров на состояние различных типов растительного покрова в федеральных округах российской федерации. Исследование Земли из космоса, 3: 13–32. https://doi.org/10.31857/S0205-96142019313-32.
Волосюк А.И., Топаз А.А. 2022. Оценка последствий лесных пожаров на основе автоматизированной обработки материалов дистанционного зондирования Земли. Журнал Белорусского государственного университета. География. Геология, 1: 57–70. https://doi.org/10.33581/2521-6740-2022-1-57-70.
Зраенко С.М. 2019. Анализ алгоритмов обнаружения заболоченных лесных участков по космическим снимкам. Научно-технический вестник Поволжья, 9: 23–25.
Копотева Т.А., Купцова В.А. 2016. Влияние пожаров на функционирование фитоценозов торфяных болот Среднеамурской низменности. Экология, 1: 14–21. https://doi.org/10.7868/S0367059715060086.
Корниенко С.Г. 2017. Изучение трансформаций тундрового напочвенного покрова на участках пирогенного поражения по данным спутников Landsat. Криосфера Земли, 21(1): 93–104. https://doi.org/10.21782/KZ1560-7496-2017-1(93-104).
Малащук А.А., Филиппов Д.А. 2021. Постпирогенная динамика растительного покрова верхового болота Барское (Вологодская область). Трансформация экосистем, 4(1–11): 104–121. https://doi.org/10.23859/estr-200512.
Московченко Д.В., Арефьев С.П., Московченко М.Д., Юртаев А.А. 2020. Пространственно-временной анализ природных пожаров в лесотундре Западной Сибири. Сибирский экологический журнал, 27(2): 243–255. .https://doi.org/10.15372/SEJ20200210.
Муравьева Л.В. 2020. Изучение многолетней динамики природно-антропогенных комплексов нарушенных болот с помощью снимков Landsat. Вестник Тверского государственного университета. Серия: География и геоэкология, 1(29): 52–60. https://doi.org/10.26456/2226-7719-1-2020-52-60.
Муравьева Л. В. 2023. Распространение пожаров и их влияние на развитие природно-антропогенных комплексов болота Васильевский мох. Вестник Тверского государственного университета. Серия: География и геоэкология, 1(41): 47–55. https://doi.org/10.26456/2226-7719-2023-1-47-55.
Родионова Н.В., Вахнина И.Л., Желибо Т.В. 2020. Оценка динамики послепожарного состояния растительности на территории Ивано-Арахлейского природного парка (Забайкальский край) по радарным и оптическим данным спутников Sentinel 1/2. Исследование Земли из космоса, 3: 14–25. https://doi.org/10.31857/S0205961420030045.
Синюткина А.А. 2024. Использование вегетационных и водных индексов для оценки состояния постпирогенных верховых болот Западной Сибири. Известия Иркутского государственного университета. Серия: Науки о Земле, 48: 90–109. https://doi.org/10.26516/2073-3402.2024.48.90.
Синюткина А.А., Гашкова Л.П. 2022. Оценка состояния и геоинформационное моделирование постпирогенной динамики участка Большого Васюганского болота. Региональные геосистемы, 46(3): 366–377. https://doi.org/10.52575/2712-7443-2022-46-3-366-377.
Синюткина А.А., Гашкова Л.П., Малолетко А.А., Магур М.Г., Харанжевская Ю.А. 2018. Трансформация поверхности и растительного покрова осушенных верховых болот юго-востока Западной Сибири. Вестник Томского государственного университета. Биология, 43: 196–223. https://doi.org/10.17223/19988591/43/10.
Тигеев А.А., Московченко Д.В., Фахретдинов А.В. 2021. Современная динамика природной и антропогенной растительности зоны предтундровых лесов Западной Сибири по данным вегетационного индекса. Современные проблемы дистанционного зондирования Земли из космоса, 18(4): 166–177. https://doi.org/10.21046/2070-7401-2021-18-4-166-177.
Токарева О.С., Алшаиби А.Д.А., Пасько О.А. 2021. Оценка восстановительной динамики растительного покрова лесных гарей с использованием данных со спутников Landsat. Известия Томского политехнического университета. Инжиниринг георесурсов, 332(7): 191–199. https://doi.org/10.18799/24131830/2021/07/3283.
Швецов Е.Г. 2024. Спутниковый мониторинг послепожарной динамики нормализованного индекса гарей в лесах юга Средней Сибири. Современные проблемы дистанционного зондирования Земли из космоса, 21(4): 176–187. https://doi.org/10.21046/2070-7401-2024-21-4-176-187.
Шинкаренко С.С., Барталев С.А. 2023. Применение данных дистанционного зондирования для широкомасштабного мониторинга водно-болотных угодий. Современные проблемы дистанционного зондирования Земли из космоса, 20(6): 9–34. https://doi.org/10.21046/2070-7401-2023-20-6-9-34.
Ackley C., Tank S.E., Haynes K. M., Rezanezhad F., McCarter C., Quintona W.L. 2021. Coupled Hydrological and Geochemical Impacts of Wildfire in Peatland-Dominated Regions of Discontinuous Permafrost. Science of the Total Environment, 782: 146841. https://doi.org/10.1016/j.scitotenv.2021.146841.
Amani M., Salehi B., Mahdavi S., Brisco B. 2018. Spectral Analysis of Wetland Using Multi-Sourse Optical Satellite Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 119–136. https://doi.org/10.1016/j.isprsjprs.2018.07.005.
Benscoter B.W., Vitt D.H. 2008. Spatial Patterns and Temporal Trajectories of the Bog Ground Layer Along a Post-Fire Chronosequence. Ecosystems, 11: 1054–1064. https://doi.org/10.1007/s10021-008-9178-4.
Bragazza L., Buttler A., Siegenthaler A., Mitchell E.A.D. 2009. Plant Litter Decomposition and Nutrient Release in Peatlands. Carbon Cycling in Northern Peatlands, 184: 99–110.
Chasmer L.E., Hopkinson C.D., Petrone R.M., Sitar M. 2017. Using Multitemporal and Multispectral Airborne Lidar to Assess Depth of Peat Loss and Correspondence with a New Active Normalized Burn Ratio for Wildfires. Geophysical Research Letters, 44(23): 11,851–11,859. https://doi.org/10.1002/2017GL075488
Cong J. Gao С., Han D., Li Y., Wang G. 2020. Stability of the Permafrost Peatlands Carbon Pool under Climate Change and Wildfires during the Last 150 Years in the Northern Great Khingan Mountains, China. Science of the Total Environment, 712: 136476. https://doi.org/10.1016/j.scitotenv.2019.136476.
Davies G.M., Gray A., Rein G., Legg C. J. 2013. Peat Consumption and Carbon Loss due to Smouldering Wildfire in a Temperate Peatland. Forest Ecology and Management, 308: 169–177. https://doi.org/10.1016/j.foreco.2013.07.051.
Dvornikov Y., Novenko E., Korets M., Olchev A. 2022. Wildfire Dynamics along a North-Central Siberian Latitudinal Transect Assessed Using Landsat Imagery. Remote Sensing, 14(3): 790. https://doi.org/10.3390/rs14030790.
Feurdean A., Florescu G., Tantau I., Vanniere B., Diaconu A.-C., Pfeiffer M., Warren D., Hutchinson S.M., Gorina N., Gałka M., Kirpotin S. 2020. Recent Fire Regime in the Southern Boreal Forests of Western Siberia Is Unprecedented in the Last Five Millennia. Quaternary Science Reviews, 244: 106495. https://doi.org/10.1016/j.quascirev.2020.106495.
Gunnarsson U. 2005. Global Patterns of Sphagnum Productivity. Journal of Bryology, 27(3): 269–279. https://doi.org/10.1179/174328205X70029.
Haas O., Keeping T., Gomez-Dans J., Prentice I.C., Harrison S.P. 2024. The Global Drivers of Wildfire. Frontiers in Environmental Science, 12: 1438262. https://doi.org/10.3389/fenvs.2024.1438262
Kettridge N., Humphrey R.E., Smith J.E., Lukenbach M.C., Devito K.J., Petrone R.M., Waddington J.M. 2014. Burned and Unburned Peat Water Repellency: Implications for Peatland Evaporation Following Wildfire. Journal of Hydrology, 513: 335–341. https://doi.org/10.1016/j.jhydrol.2014.03.019.
Knox S.H., Dronova I., Sturtevant C., Oikawa P.Y., Matthes J.H., Verfaillie J., Baldocchi D. 2017. Using Digital Camera and Landsat Imagery with Eddy Covariance Data to Model Gross Primary Production in Restored Wetlands. Agricultural and Forest Meteorology, 237–238: 233–245. https://doi.org/10.1016/j.agrformet.2017.02.020.
Lin S., Liu Ya., Huang X. 2021. Climate-Induced Arctic-Boreal Peatland Fire and Carbon Loss in the 21st Century. Science of the Total Environment, 796: 148924. https://doi.org/10.1016/j.scitotenv.2021.148924.
Meingast K.M., Falkowski M.J., Kane E.S., Potvin L.R., Benscoter B.W., Smith A.M.S., Bourgeau-Chavez L.L., Miller M.E. 2014. Spectral Detection of Near-Surface Moisture Content and Water-Table Position in Northern Peatland Ecosystems. Remote Sensing of Environment, 152: 536–546. http://dx.doi.org/10.1016/j.rse.2014.07.014.
Moore P.A., Lukenbach M.C., Kettridge N., Petrone R.M., Devito K.J., Waddington J.M. 2017. Peatland Water Repellency: Importance of Soil Water Content, Moss Species and Burn Severity. Journal of Hydrology, 554: 656–665. https://doi.org/10.1016/j.jhydrol.2017.09.036.
Rein G., Huang X. 2021. Smouldering Wildfires in Peatlands, Forests and the Arctic: Challenges and Perspectives. Environmental Science and Health, 24: 100296. http://dx.doi.org/10.1016/j.coesh.2021.100296.
Sinyutkina A. 2021. Drainage Consequences and Self-Restoration of Drained Raised Bogs in the South-Eastern Part of Western Siberia: Peat Accumulation and Vegetation Dynamics. Catena, 205: 105464. http://dx.doi.org/10.1016/j.catena.2021.105464.
Sirin A.A., Medvedeva M.A., Makarov D.A., Maslov A.A., Joosten H. 2020. Multispectral Satellite Based Monitoring of Land Cover Change and Associated Fire Reduction after Large-Scale Peatland Rewetting following the 2010 Peat Fires in Moscow Region (Russia). Ecological Engineering, 158: 106044. http://dx.doi.org/10.1016/j.ecoleng.2020.106044.
References
Bartalev S.A., Stytsenko F.V., Egorov V.A., Loupian E.A. 2015. Satellite-Based Asessment of Russian Forest Fire Mortality. Russian Journal of Forest Science, 2: 83–94 (in Russian).
Bondur V.G., Tsidilina M.N., Cherepanova E.V. 2019. Satellite Monitoring of Wildfire Impacts on the Conditions of Various Types of Vegetation Cover in the Federal Districts of the Russian Federation. Izvestiya. Atmospheric and Oceanic Physics, 3: 13–32 (in Russian). https://doi.org/10.31857/S0205-96142019313-32.
Valasiuk A.I., Topaz A.A. 2022. Assessment of Forest Fire Effects Based on Automated Processing of Earth Remote Sensing Imagery. Journal of the Belarusian State University. Geography and Geology, 1: 57–70 (in Russian). https://doi.org/10.33581/2521-6740-2022-1-57-70.
Zraenko S.M. 2019. Analysis of the Possibilities of Detecting Waterforged Forest Sections by Space Images. Nauchno-tekhnicheskii vestnik Povolzh'ya. Scientific and Technical Volga Region Bulletin, 9: 23–25.
Kopoteva T.A., Kuptsova V.A. 2016. Effect of Fires on the Functioning of Phytocenoses of Peat Bogs in the Middle-Amur Lowland. Russian Journal of Ecilogy, 1: 11–18 (in Russian). https://doi.org/10.7868/S0367059715060086.
Kornienko S.G. 2017. Transformation of Tundra Land Cover at the Sites of Pyrogenic Disturbance: Studies Based on Landsat Satellite Data. Earth’s Cryosphere, 21(1): 93–104 (in Russian). https://doi.org/10.21782/KZ1560-7496-2017-1(93-104).
Malashchuk A.A., Filippov D.A. 2021. Post-Pyrogenic Dynamics of the Vegetation Cover of the Barskoe Raised Bog (Vologda Region, Russia). Ecosystem Transformation, 4(1–11): 104–121 (in Russian). https://doi.org/10.23859/estr-200512.
Moskovchenko D.V., Aref'ev S.P., Moskovchenko M.D. Yurtaev A.A. 2020. Spatiotemporal Analysis of Wildfires in the Forest Tundra of Western Siberia. Contemporary Problems of Ecology, 13(2): 193–203 (in Russian). https://doi.org/10.1134/S1995425520020092.
Murav'eva L.V. 2020. Study of the Multi-Year Dynamics of Natural-Anthropogenic Complexes of Disturbed Bogs by Using Landsat Pictures. Herald of Tver State University. Series: Geography and Geoecology, 1(29): 52–60 (in Russian). https://doi.org/10.26456/2226-7719-1-2020-52-60.
Murav'eva L.V. 2023. The Spread of Fires and Their Influence on the Development of Natural-Anthropogenic Complexes of the Swamp Vasilievsky Mokh. Herald of Tver State University. Series: Geography and Geoecology, 1(41): 47–55 (in Russian). https://doi.org/10.26456/2226-7719-2023-1-47-55.
Rodionova N.V., Vakhnina I.L., Zhelibo T.V. 2020. Assessment of the Dynamics of Postfire State of Vegetation in Territory Ivan-Arakhley Natural Park (Zabaikalsky Krai) Using Radar and Optical Sentinel 1/2 Data. Izvestiya. Atmospheric and Oceanic Physics, 3: 14–25 (in Russian). https://doi.org/10.31857/S0205961420030045.
Sinyutkina A.A. 2024. The Application of Vegetation and Water Indices to Assess the State of Post-Pyrogenic Raised Bogs in Western Siberia. The Bulletin of Irkutsk State University». Series «Earth Sciences», 48: 90–109 (in Russian). https://doi.org/10.26516/2073-3402.2024.48.90.
Sinyutkina A.А., Gashkova L.P. 2022. State Assessing and GIS Modeling of the Post-Pyrogenic Dynamics of the Great Vasyugan Mire Site. Regional Geosystems, 46(3): 366–377 (in Russian). https://doi.org/10.52575/2712-7443-2022-46-3-366-377.
Sinyutkina, A.A., Gashkova, L.P., Maloletko, A.A., Magur, M.G., Kharanzhevskaya, Y.A. 2018. Transformation of the Surface and Vegetation Cover of Drained Bogs in Tomsk Region. Tomsk State University Journal of Biology, 43: 196–223 (in Russian). https://doi.org/10.17223/19988591/43/10.
Tigeev A.A., Moskovchenko D.V., Fakhretdinov A.V. 2021. Current Trends in Natural and Anthropogenic Vegetation in Western Siberia’s Sub-Tundra Forests Based on Vegetation Indices Data. Current Problems in Remote Sensing of the Earth from Space, 18(4): 166–177 (in Russian). https://doi.org/10.21046/2070-7401-2021-18-4-166-177.
Tokareva O.S., Alshaibi A.D.A., Pasko O.A. 2021. Assessment of Restoration Dynamics of Burnt Forest Area Vegetation Using Landsat Satellite Data. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 332(7): 191–199 (in Russian). https://doi.org/10.18799/24131830/2021/07/3283.
Shvetsov E.G. 2024. Satellite Monitoring of Post-Fire Normalized Burn Ratio Dynamics in Forests in the South of Central Siberia. Current Problems in Remote Sensing of the Earth from Space, 21(4): 176–187 (in Russian). https://doi.org/10.21046/2070-7401-2024-21-4-176-187.
Shinkarenko S.S., Bartalev S.A. 2023. Application of Remote Sensing Data in Large-Scale Monitoring of Wetlands. Current Problems in Remote Sensing of the Earth from Space, 20(6): 9–34 (in Russian). https://doi.org/10.21046/2070-7401-2023-20-6-9-34.
Ackley C., Tank S.E., Haynes K. M., Rezanezhad F., McCarter C., Quintona W.L. 2021. Coupled Hydrological and Geochemical Impacts of Wildfire in Peatland-Dominated Regions of Discontinuous Permafrost. Science of the Total Environment, 782: 146841. https://doi.org/10.1016/j.scitotenv.2021.146841.
Amani M., Salehi B., Mahdavi S., Brisco B. 2018. Spectral Analysis of Wetland Using Multi-Sourse Optical Satellite Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 119–136. https://doi.org/10.1016/j.isprsjprs.2018.07.005.
Benscoter B.W., Vitt D.H. 2008. Spatial Patterns and Temporal Trajectories of the Bog Ground Layer Along a Post-Fire Chronosequence. Ecosystems, 11: 1054–1064. https://doi.org/10.1007/s10021-008-9178-4.
Bragazza L., Buttler A., Siegenthaler A., Mitchell E.A.D. 2009. Plant Litter Decomposition and Nutrient Release in Peatlands. Carbon Cycling in Northern Peatlands, 184: 99–110.
Chasmer L.E., Hopkinson C.D., Petrone R.M., Sitar M. 2017. Using Multitemporal and Multispectral Airborne Lidar to Assess Depth of Peat Loss and Correspondence with a New Active Normalized Burn Ratio for Wildfires. Geophysical Research Letters, 44(23): 11,851–11,859. https://doi.org/10.1002/2017GL075488
Cong J. Gao С., Han D., Li Y., Wang G. 2020. Stability of the Permafrost Peatlands Carbon Pool under Climate Change and Wildfires during the Last 150 Years in the Northern Great Khingan Mountains, China. Science of the Total Environment, 712: 136476. https://doi.org/10.1016/j.scitotenv.2019.136476.
Davies G.M., Gray A., Rein G., Legg C. J. 2013. Peat Consumption and Carbon Loss due to Smouldering Wildfire in a Temperate Peatland. Forest Ecology and Management, 308: 169–177. https://doi.org/10.1016/j.foreco.2013.07.051.
Dvornikov Y., Novenko E., Korets M., Olchev A. 2022. Wildfire Dynamics along a North-Central Siberian Latitudinal Transect Assessed Using Landsat Imagery. Remote Sensing, 14(3): 790. https://doi.org/10.3390/rs14030790.
Feurdean A., Florescu G., Tantau I., Vanniere B., Diaconu A.-C., Pfeiffer M., Warren D., Hutchinson S.M., Gorina N., Gałka M., Kirpotin S. 2020. Recent Fire Regime in the Southern Boreal Forests of Western Siberia Is Unprecedented in the Last Five Millennia. Quaternary Science Reviews, 244: 106495. https://doi.org/10.1016/j.quascirev.2020.106495.
Gunnarsson U. 2005. Global Patterns of Sphagnum Productivity. Journal of Bryology, 27(3): 269–279. https://doi.org/10.1179/174328205X70029.
Haas O., Keeping T., Gomez-Dans J., Prentice I.C., Harrison S.P. 2024. The Global Drivers of Wildfire. Frontiers in Environmental Science, 12: 1438262. https://doi.org/10.3389/fenvs.2024.1438262
Kettridge N., Humphrey R.E., Smith J.E., Lukenbach M.C., Devito K.J., Petrone R.M., Waddington J.M. 2014. Burned and Unburned Peat Water Repellency: Implications for Peatland Evaporation Following Wildfire. Journal of Hydrology, 513: 335–341. https://doi.org/10.1016/j.jhydrol.2014.03.019.
Knox S.H., Dronova I., Sturtevant C., Oikawa P.Y., Matthes J.H., Verfaillie J., Baldocchi D. 2017. Using Digital Camera and Landsat Imagery with Eddy Covariance Data to Model Gross Primary Production in Restored Wetlands. Agricultural and Forest Meteorology, 237–238: 233–245. https://doi.org/10.1016/j.agrformet.2017.02.020.
Lin S., Liu Ya., Huang X. 2021. Climate-Induced Arctic-Boreal Peatland Fire and Carbon Loss in the 21st Century. Science of the Total Environment, 796: 148924. https://doi.org/10.1016/j.scitotenv.2021.148924.
Meingast K.M., Falkowski M.J., Kane E.S., Potvin L.R., Benscoter B.W., Smith A.M.S., Bourgeau-Chavez L.L., Miller M.E. 2014. Spectral Detection of Near-Surface Moisture Content and Water-Table Position in Northern Peatland Ecosystems. Remote Sensing of Environment, 152: 536–546. http://dx.doi.org/10.1016/j.rse.2014.07.014.
Moore P.A., Lukenbach M.C., Kettridge N., Petrone R.M., Devito K.J., Waddington J.M. 2017. Peatland Water Repellency: Importance of Soil Water Content, Moss Species and Burn Severity. Journal of Hydrology, 554: 656–665. https://doi.org/10.1016/j.jhydrol.2017.09.036.
Rein G., Huang X. 2021. Smouldering Wildfires in Peatlands, Forests and the Arctic: Challenges and Perspectives. Environmental Science and Health, 24: 100296. http://dx.doi.org/10.1016/j.coesh.2021.100296.
Sinyutkina A. 2021. Drainage Consequences and Self-Restoration of Drained Raised Bogs in the South-Eastern Part of Western Siberia: Peat Accumulation and Vegetation Dynamics. Catena, 205: 105464. http://dx.doi.org/10.1016/j.catena.2021.105464.
Sirin A.A., Medvedeva M.A., Makarov D.A., Maslov A.A., Joosten H. 2020. Multispectral Satellite Based Monitoring of Land Cover Change and Associated Fire Reduction after Large-Scale Peatland Rewetting following the 2010 Peat Fires in Moscow Region (Russia). Ecological Engineering, 158: 106044. http://dx.doi.org/10.1016/j.ecoleng.2020.106044.
Share
Published
How to Cite
Issue
Section
Copyright (c) 2025 Regional Geosystems

This work is licensed under a Creative Commons Attribution 4.0 International License.