Distribution Limits of Tactile Communication’s Territorial Communities in the Irkutsk Region: A Geographical Forecast
DOI:
https://doi.org/10.52575/2712-7443-2025-49-1-16-28Keywords:
human geography, Tactile Internet, data transmission delay, territorial community, future digital inequality, Irkutsk regionAbstract
The next decade will see the deployment of the Tactile Internet based on the sixth generation telecommunication network, allowing real-time remote exchange of not only text, audio and video, but also tactile sensations. However, the possible socio-geographical consequences of this deployment have not yet been analysed in the world science. One of the negative consequences will be the fragmentation of the country’s unified telecommunication space into many separate areas where real-time exchange of tactile sensations will be maintained. Outside these areas, no tactile communication will be available. Specific territorial communities of tactile communication will be formed in such areas. These communities were not previously distinguished in any region or country. Therefore, the purpose of our study was to identify such communities by establishing the maximum possible number of towns and urban-type settlements in each area at different stages of the Tactile Internet deployment in the Irkutsk region in the 2030s and beyond. We have found that the maximum size of territorial communities is determined by the magnitude of the circular delay in the transmission of tactile data between towns and settlements, which should not exceed one millisecond. To identify communities, the author's database of telecommunication lines and Russian Federal Service of State Statistics’ data on the population of urban settlements were used. The delay value was calculated using a special formula. The restrictions on the population number in community centers are were taken from the domestic experience of broadband deployment. This allowed us to identify ten stages of tactile communication deployment. The calculation of the delay between 66 urban settlements of the Irkutsk region made it possible to identify 13 territorial communities of tactile communication. The article provides a list of settlements included in each community and the sequence of community formation. The author interprets the results from the perspective of problematic settlements and the future of internet-tactile inequality. The practical significance of the study is connected with the development of a program to eliminate future inequality.
Acknowledgements: The study was carried out at the expense of the state task (registration number of the topic АААА-А21-121012190018-2)
Downloads
References
Список источников
Иркутская область. Расчет предположительной численности населения. Средний вариант прогноза (1 января 2024–2046 гг.). Электронный ресурс. URL: https://38.rosstat.gov.ru/folder/167937 (дата обращения: 20.10.2024).
Развитие мобильной связи и широкополосного доступа (22.06.2020). Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации. Электронный ресурс. URL: https://digital.gov.ru/ru/activity/directions/543/ (дата обращения: 20.10.2024).
Численность населения Российской Федерации по муниципальным образованиям на 1 января 2023 года. Федеральная служба государственной статистики. Электронный ресурс. URL: https://rosstat.gov.ru/compendium/document/13282 (дата обращения: 20.10.2024).
The Tactile Internet: ITU-T Technology Watch Report, August 2014. 2014. Geneva, ITU, 18 p.
Список литературы
Блануца В.И. 2019. Информационно-сетевая география. Москва, ИНФРА-М, 243 с. https://doi.org/10.12737/monography_5cff8bcec8c6d5.00839612
Блануца В.И. 2024. Идентификация критической телекоммуникационной инфраструктуры в России: географический подход. География и природные ресурсы, 45(1): 5–14. https://doi.org/10.15372/GIPR20240101
Кузнецов К.А., Мутханна Ф.С.Ф., Кучерявый А.Е. 2019. Тактильный интернет и его приложения. Информационные технологии и телекоммуникации, 7(2): 12–20. https://doi.org/10.31854/2307-1303-2019-7-2-12-20
Кучерявый А.Е., Маколкина М.А., Киричек Р.В. 2016. Тактильный интернет. Сети связи со сверхмалыми задержками. Электросвязь, 1: 44–46.
Перфильев Ю.Ю. 2003. Российское интернет-пространство: развитие и структура. Москва, Гардарики, 272 с.
Arjona J.O., Santacruz J.S.R., de Las Obras-Loscertales J. 2023. Mapping of Functional Areas in Spain Based on Mobile Phone Data During Different Phases of the COVID-19 Pandemic. Journal of Maps, 19(1): 2214804. https://doi.org/10.1080/17445647.2023.2214804
Awais M., Khan F.U., Zafar M., Mudassar M., Zaheer M.Z., Cheema K.M., Kamran M., Jung W.-S. 2023. Towards Enabling Haptic Communications Over 6G: Issues and Challenges. Electronics, 12(13): 2955. https://doi.org/10.3390/electronics12132955
Blom T., Nilsson M. 2023. Tactile Tourism: Tourist Attractions Touch. Tourism, 71(3): 553–567. https://doi.org/10.37741/t.71.3.8
Botta F., del Genio C.I. 2017. Analysis of the Communities of an Urban Mobile Phone Network. PLoS ONE, 12(3): 0174198. https://doi.org/10.1371/journal.pone.0174198
Fanibhare V., Sarkar N.I., Al-Anbuky A. 2021. A Survey of the Tactile Internet: Design Issues and Challenges, Applications, and Future Directions. Electronics, 10(17): 2171. https://doi.org/10.3390/electronics10172171
Fettweis G.P. 2014. The Tactile Internet: Applications and Challenges. IEEE Vehicular Technology Magazine, 9(1): 64–70. https://doi.org/10.1109/mvt.2013.2295069
Fitzek F.H.P., Li, S. C., Speidel S., Strufe T., Simsek M., Reisslein M. 2021. Tactile Internet with Human-in-the-Loop. London, San Diego, Cambridge. Oxford, Academic Press, 508 p.
Hargittai E. 2002. Second-Level Digital Divide: Differences in People’s Online Skills. First Monday, 7(4): 1–20. https://doi.org/10.5210/fm.v7i4.942
Hou Z., She C., Li Y., Niyato D., Dohler M., Vucetic B. 2021. Intelligent Communications for Tactile Internet in 6G: Requirements Technologies and Challenges. IEEE Communications Magazine, 59(12): 82–88. https://doi.org/10.1109/mcom.006.2100227
Iacus S.M., Santamaria C., Sermi F., Spyratos S., Tarchi D., Vespe M. 2022. Mobility Functional Areas and COVID-19 Spread. Transportation, 49(6): 1999–2025. https://doi.org/10.1007/s11116-021-10234-z
Islam M.Z., Ali R., Malik A.H., Kim H.S. 2022. QoS Provisioning: Key Drivers and Enables Toward the Tactile Internet in Beyond 5G Era. IEEE Access, 10: 85720–85754. https://doi.org/10.1109/access.2022.3197900
Le D.T., Nguyen T.G., Tran T.T.T. 2020. The 1-Millisecond Challenge – Tactile Internet: From Concept to Standardization. Journal of Telecommunications and the Digital Economy, 8(2): 56–93. https://doi.org/10.18080/jtde.v8n2.240
Martínez-Bernabéu L., Coombes M., Casado-Díaz J.M. 2020. Functional Regions for Policy: A Statistical ‘Toolbox’ Providing Evidence for Decisions Between Alternative Geographies. Applied Spatial Analysis and Policy, 13: 739–758. https://doi.org/10.1007/s12061-019-09326-2
Samanta A., Panigrahi B., Rath H.K., Shailendra S. 2021. On Low Latency Uplink Scheduling for Cellular Haptic Communication To Support Tactile Internet. Wireless Personal Communications, 121: 1471–1488. https://doi.org/10.1007/s11277-021-08680-0
Scheerder A., van Deursen A., van Dijk J. 2017. Determinants of Internet Skills, Uses and Outcomes. A Systematic Review of the Second- and Third-Level Digital Divide. Telematics and Informatics, 34(8): 1607–1624. https://doi.org/10.1016/j.tele.2017.07.007
Shen J., Zong H., Chen M. 2023. Identifying City Communities in China by Fusing Multisource Flow Data. International Journal of Digital Earth, 16(2): 4247–4264. https://doi.org/10.1080/17538947.2023.2268595
Simsek M., Alijaz A., Dohler M., Sachs J., Fettweis G. 2016. 5G-enabled Tactile Internet. IEEE Journal on Selected Areas in Communications, 34(3): 460–473. https://doi.org/10.1109/jsac.2016.2525398
Tychola K.A., Voulgaridis K., Lagkas T. 2023. Tactile IoT and 5G & Beyond Schemes as Key Enabling Technologies for the Future Metaverse. Telecommunication Systems, 84: 363–385. https://doi.org/10.1007/s11235-023-01052-y
Van Dijk J. 2020. The Digital Divide. Cambridge, Polity Press, 208 p.
Vaquero-Melchor D., Bernardos A.M. 2019. Enhancing Interaction with Augmented Reality Through Mid-Air Haptic Feedback: Architecture Design and User Feedback. Applied Sciences, 9(23): 5123. https://doi.org/10.3390/app9235123
Yahiya T.I., Kirci P. 2019. Issues and Challenges Facing Low Latency in Tactile Internet. UKH Journal of Science and Engineering, 3(1): 47–58. https://doi.org/10.25079/ukhjse.v3n1y2019.pp44-58
Yang X., Fang Z., Xu Y., Yin L., Li J., Lu S. 2019. Spatial Heterogeneity in Spatial Interaction of Human Movements – Insights from Large-Scale Mobile Positioning Data. Journal of Transport Geography, 78: 29–40. https://doi.org/10.1016/j.jtrangeo.2019.05.010
Yu H., Afzal M.K. Zikria Y.B., Rachedi A., Fitzek F.H.P. 2020. Tactile Internet: Technologies, Test Platforms, Trials, and Applications. Future Generation Computer Systems, 106: 685–688. https://doi.org/10.1016/j.future.2020.01.057
Zhang B., Zhong C., Cao Q., Shabrina Z., Tu W. 2022. Delineating Urban Functional Zones Using Mobile Phone Data: A Case Study of Cross-Boundary Integration in Shenzhen-Dongguan-Huizhou Area. Computer, Environment and Urban Systems, 98: 101872. https://doi.org/10.1016/j.compenvurbsys.2022.101872
References
Blanutsa V.I. 2019. Information Network Geography. Moscow, Pabl. INFRA-M, 243 p. (in Russian). https://doi.org/10.12737/monography_5cff8bcec8c6d5.00839612
Blanutsa V.I. 2024. Identification of Critical Telecommunications Infrastructure in Russia: a Geographical Approach. Geography and Natural Resources, 45(1): 5–14 (in Russian). https://doi.org/10.15372/GIPR20240101
Kuznetsov K.A., Muthanna F.S.F., Kucheryavy A.E. 2019. Tactile Internet and Its Applications. Telecom IT, 7(2): 12–20 (in Russian). https://doi.org/10.31854/2307-1303-2019-7-2-12-20
Kucheryavy A.E., Makolkina M.A., Kirichek R.V. 2016. Tactile Internet. Ultra-Low Latency Networks. Electrosvyaz, 1: 44–46 (in Russian).
Perfiliev Yu.Yu. 2003. Rossijskoe internet-prostranstvo: razvitie i struktura [The Russian Internet Space: Development and Structure]. Moscow, Pabl. Gardariki, 272 p.
Arjona J.O., Santacruz J.S.R., de Las Obras-Loscertales J. 2023. Mapping of Functional Areas in Spain Based on Mobile Phone Data During Different Phases of the COVID-19 Pandemic. Journal of Maps, 19(1): 2214804. https://doi.org/10.1080/17445647.2023.2214804
Awais M., Khan F.U., Zafar M., Mudassar M., Zaheer M.Z., Cheema K.M., Kamran M., Jung W.-S. 2023. Towards Enabling Haptic Communications Over 6G: Issues and Challenges. Electronics, 12(13): 2955. https://doi.org/10.3390/electronics12132955
Blom T., Nilsson M. 2023. Tactile Tourism: Tourist Attractions Touch. Tourism, 71(3): 553–567. https://doi.org/10.37741/t.71.3.8
Botta F., del Genio C.I. 2017. Analysis of the Communities of an Urban Mobile Phone Network. PLoS ONE, 12(3): 0174198. https://doi.org/10.1371/journal.pone.0174198
Fanibhare V., Sarkar N.I., Al-Anbuky A. 2021. A Survey of the Tactile Internet: Design Issues and Challenges, Applications, and Future Directions. Electronics, 10(17): 2171. https://doi.org/10.3390/electronics10172171
Fettweis G.P. 2014. The Tactile Internet: Applications and Challenges. IEEE Vehicular Technology Magazine, 9(1): 64–70. https://doi.org/10.1109/mvt.2013.2295069
Fitzek F.H.P., Li, S. C., Speidel S., Strufe T., Simsek M., Reisslein M. 2021. Tactile Internet with Human-in-the-Loop. London, San Diego, Cambridge. Oxford, Academic Press, 508 p.
Hargittai E. 2002. Second-Level Digital Divide: Differences in People’s Online Skills. First Monday, 7(4): 1–20. https://doi.org/10.5210/fm.v7i4.942
Hou Z., She C., Li Y., Niyato D., Dohler M., Vucetic B. 2021. Intelligent Communications for Tactile Internet in 6G: Requirements Technologies and Challenges. IEEE Communications Magazine, 59(12): 82–88. https://doi.org/10.1109/mcom.006.2100227
Iacus S.M., Santamaria C., Sermi F., Spyratos S., Tarchi D., Vespe M. 2022. Mobility Functional Areas and COVID-19 Spread. Transportation, 49(6): 1999–2025. https://doi.org/10.1007/s11116-021-10234-z
Islam M.Z., Ali R., Malik A.H., Kim H.S. 2022. QoS Provisioning: Key Drivers and Enables Toward the Tactile Internet in Beyond 5G Era. IEEE Access, 10: 85720–85754. https://doi.org/10.1109/access.2022.3197900
Le D.T., Nguyen T.G., Tran T.T.T. 2020. The 1-Millisecond Challenge – Tactile Internet: From Concept to Standardization. Journal of Telecommunications and the Digital Economy, 8(2): 56–93. https://doi.org/10.18080/jtde.v8n2.240
Martínez-Bernabéu L., Coombes M., Casado-Díaz J.M. 2020. Functional Regions for Policy: A Statistical ‘Toolbox’ Providing Evidence for Decisions Between Alternative Geographies. Applied Spatial Analysis and Policy, 13: 739–758. https://doi.org/10.1007/s12061-019-09326-2
Samanta A., Panigrahi B., Rath H.K., Shailendra S. 2021. On Low Latency Uplink Scheduling for Cellular Haptic Communication To Support Tactile Internet. Wireless Personal Communications, 121: 1471–1488. https://doi.org/10.1007/s11277-021-08680-0
Scheerder A., van Deursen A., van Dijk J. 2017. Determinants of Internet Skills, Uses and Outcomes. A Systematic Review of the Second- and Third-Level Digital Divide. Telematics and Informatics, 34(8): 1607–1624. https://doi.org/10.1016/j.tele.2017.07.007
Shen J., Zong H., Chen M. 2023. Identifying City Communities in China by Fusing Multisource Flow Data. International Journal of Digital Earth, 16(2): 4247–4264. https://doi.org/10.1080/17538947.2023.2268595
Simsek M., Alijaz A., Dohler M., Sachs J., Fettweis G. 2016. 5G-enabled Tactile Internet. IEEE Journal on Selected Areas in Communications, 34(3): 460–473. https://doi.org/10.1109/jsac.2016.2525398
Tychola K.A., Voulgaridis K., Lagkas T. 2023. Tactile IoT and 5G & Beyond Schemes as Key Enabling Technologies for the Future Metaverse. Telecommunication Systems, 84: 363–385. https://doi.org/10.1007/s11235-023-01052-y
Van Dijk J. 2020. The Digital Divide. Cambridge, Polity Press, 208 p.
Vaquero-Melchor D., Bernardos A.M. 2019. Enhancing Interaction with Augmented Reality Through Mid-Air Haptic Feedback: Architecture Design and User Feedback. Applied Sciences, 9(23): 5123. https://doi.org/10.3390/app9235123
Yahiya T.I., Kirci P. 2019. Issues and Challenges Facing Low Latency in Tactile Internet. UKH Journal of Science and Engineering, 3(1): 47–58. https://doi.org/10.25079/ukhjse.v3n1y2019.pp. 44–58
Yang X., Fang Z., Xu Y., Yin L., Li J., Lu S. 2019. Spatial Heterogeneity in Spatial Interaction of Human Movements – Insights from Large-Scale Mobile Positioning Data. Journal of Transport Geography, 78: 29–40. https://doi.org/10.1016/j.jtrangeo.2019.05.010
Yu H., Afzal M.K. Zikria Y.B., Rachedi A., Fitzek F.H.P. 2020. Tactile Internet: Technologies, Test Platforms, Trials, and Applications. Future Generation Computer Systems, 106: 685–688. https://doi.org/10.1016/j.future.2020.01.057
Zhang B., Zhong C., Cao Q., Shabrina Z., Tu W. 2022. Delineating Urban Functional Zones Using Mobile Phone Data: A Case Study of Cross-Boundary Integration in Shenzhen-Dongguan-Huizhou Area. Computer, Environment and Urban Systems, 98: 101872. https://doi.org/10.1016/j.compenvurbsys.2022.101872
Share
Published
How to Cite
Issue
Section
Copyright (c) 2025 Regional Geosystems

This work is licensed under a Creative Commons Attribution 4.0 International License.