Dynamics of Various Size Particle Distribution in Slope Washout Products
DOI:
https://doi.org/10.52575/2712-7443-2024-48-4-515-525Keywords:
soil erosion, granulometry, experiment, slope, sprinkling, soils, groundAbstract
The article interprets the results of the analysis of soil washout product granulometric composition. The problem is considered within the framework of constructing a theoretical model of sediment movement by surface runoff. During the study, the granulometric composition of sediments formed by the method of full-scale experiment at the test site was compared to that of the material on the slope in its natural state, which shows surface runoff only. It is shown that in the conditions of a full-scale experiment, on a site composed of sandy material, the proportion of larger fractions increases towards the bottom. On the slope of a complex structure in its natural state, there are no pronounced patterns in the change in the granulometric composition of sediments. It is assumed that deluvium fraction distribution patterns that are characteristic of slopes with a homogeneous composition are smoothed by the arrival of eluvial material which is heterogeneous in terms of composition and erosion resistance.
Downloads
References
Список литературы
Бастраков Г.В. 2010. Теоретическое обоснование физических моделей эрозии почв и горных пород. В кн.: Эрозионные и русловые процессы. Под ред. Р.С. Чалова. М., Географический факультет Московского государственного университета им. М.В. Ломоносова: 80–101.
Заславский М.Н. 1977. Эрозионно опасные земли на территории СССР. Почвоведение, 8: 100–105.
Караушев А.В. 1977. Теория и методы расчета речных наносов. Л., Гидрометеоиздат, 272 с.
Козменко А.С. 1937. Борьба с эрозией почв. М., Л., Издательство Всесоюзной академии сельскохозяйственных наук им. В.И. Ленина, 92 с.
Ларионов Г.А. 1993. Эрозия и дефляция почв: основные закономерности и количественные оценки. Москва, Изд-во МГУ, 198 с.
Лисецкий Ф. Н., Черный С.Г., Светличный А.А. 2012. Современные проблемы эрозиоведения. Белгород, Константа, 456 с. https://doi.org/10.13140/2.1.1029.9682.
Лопатин Г.В. 1952. Наносы рек СССР. М., Географгиз, 363 с.
Маккавеев Н.И. 1955. Русло реки и эрозия в ее бассейне. М., АН СССР, 346 с.
Небольсин С.И. 1937. Элементарный поверхностный сток. Л., М., Гидрометеорологическое издательство, 41 с.
Asadi H., Ghadiri H., Rose C.W., Yu B., Hussein J. 1999. An Investigation of Flow-Driven Soil Erosion Processes at Low Streampowers. Journal of Hydrology, 342(1–2): 134–142. https://doi.org/10.1016/j.jhydrol.2007.05.019
Asadi H., Moussavi A., Ghadiri H., Rose C.W. 2011. Flow-Driven Soil Erosion Processes and the Size Selectivity of Sediment. Journal of Hydrology, 406(1–2): 73–81. https://doi.org/10.1016/j.jhydrol.2011.06.010
Batista P.V.G., Davies J., Silva M.L.N., Quinton J.N. 2019. On the Evaluation of Soil Erosion Models: Are We Doing Enough? Earth-Science Reviews, 197: 102898. https://doi.org/10.1016/j.earscirev.2019.102898
Borrelli P., Alewell Ch., Alvarez P., Anache J.A.A., Baartman J., Ballabio C., Bezak N., Biddoccu M., Cerdà A., Chalise D., Chen S., Chen W., De Girolamo A.M., Gessesse G.D., Deumlich D., Diodato N., Efthimiou N., Erpul G., Fiener P., Freppaz M., Gentile F., Gericke A., Haregeweyn N., Hu B., Jeanneau A., Kaffas K., Kiani-Harchegani M., Villuendas I.L., Li Ch., Lombardo L., López-Vicente M., Lucas-Borja M.E., Märker M., Matthews F., Miao Ch., Mikoš M., Modugno S., Möller M., Naipal V., Nearing M., Owusu S., Panday D., Patault E., Patriche C.V., Poggio L., Portes R., Quijano L., Rahdari M.R., Renima M., Ricci G.F., Rodrigo-Comino J., Saia S., Samani A.N., Schillaci C., Syrris V., Kim H.S., Spinola D.N., Oliveira P.T., Teng H., Thapa R., Vantas K., Vieira D., Yang J.E., Yin Sh., Zema D.A., Zhao G., Panagos P. 2021. Soil Erosion Modelling: A Global Review and Statistical Analysis. Science of the Total Environment, 780: 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
Hairsine P.B, Sander G.C., Rose C.W., Parlange J.-Y., Hogarth W.L., Lisle I., Rouhipour H. 1999. Unsteady Soil Erosion Due to Rainfall Impact: a Model of Sediment Sorting on the Hillslope. Journal of Hydrology, 220(3–4): 115–128. https://doi.org/10.1016/S0022-1694(99)00068-2
Issa O.M., Bissonnais Y.L., Planchon O., Favis-Mortlock D., Silvera N., Wainwright J. 2006. Soil Detachment and Transport on Field- and Laboratory-Scale Interrill Areas: Erosion Processes and the Size-Selectivity of Eroded Sediment. Earth Surface Processes and Landforms, 31 (8): 929–939.
Kinnell P.I.A. 2020. The Influence of Time and Other Factors on Soil Loss Produced by Rain-Impacted Flow Under Artificial Rainfall. Journal of Hydrology, 587: 125004. https://doi.org/10.1016/j.jhydrol.2020.125004
Lin J., Huang Y., Zhao G., Jiang F., Wang M.-K., Ge H. 2017. Flow-Driven Soil Erosion Processes and the Size Selectivity of Eroded Sediment on Steep Slopes Using Colluvial Deposits in a Permanent Gully. Catena, 157: 47–57. https://doi.org/10.1016/j.catena.2017.05.015
Neal T.H. 1938. Effect of Degree of Slope and Rainfall Characteristics on Runoff and Soil Erosion. Agricultural Engeneering. Research Bulletin, 280: 45 p.
Rienzi E.A., Fox J.F., Grove J.H., Matocha C.J. 2013. Interrill Erosion in Soils with Different Land Uses: The Kinetic Energy Wetting Effect on Temporal Particle Size Distribution. Catena, 107: 130–138. https://doi.org/10.1016/j.catena.2013.02.007
Zhang P., Yao W., Liu G., Xiao P., Sun W. 2020. Experimental Study of Sediment Transport Processes and Size Selectivity of Eroded Sediment on Steep Pisha Sandstone Slopes. Geomorphology, 363: 107211. https://doi.org/10.1016/j.geomorph.2020.107211
References
Bastrakov G.V. 2010. Teoreticheskoe obosnovanie fizicheskikh modelei erozii pochv i gornikh porod [Theoretical Substantiation of Physical Models of Soil and Rock Erosion]. In: Erozionnie i ruslovie protsessi [Erosion and Riverbed Processes]. Ed. by R.S. Chalov. Moscow, Pabl. Geograficheskii fakultet Moskovskogo gosudarstvennogo universiteta im. M.V. Lomonosova: 80–101.
Zaslavsky M.N. 1977. Erozionno opasnie zemli na territorii SSSR [Erosive Lands on the Territory of the USSR]. Pochvovedenie, 8: 100–105.
Karaushev A.V. 1977. Teoriya i metodi rascheta rechnikh nanosov [Theory and Methods of Calculating River Sediments]. Leningrad, Pabl. Hydrometeoizdat, 272 p.
Kozmenko A.S. 1937. Borba s eroziei pochv [The Fight Against Soil Erosion]. Moscow, Leningrad, Publ. Vsesoyuznoi akademii selskokhozyaistvennikh nauk im. V.I. Lenina, 92 p.
Larionov G.A. 1993. Eroziya i deflyatsiya pochv: osnovnyye zakonomernosti i kolichestvennyye otsenki [Soil Erosion and Deflation: Basic Patterns and Quantitative Estimates]. Moscow, Publ. Moscow State University, 198 p.
Lisetsky F.N., Chernyi S.G., Svetlichnyi A.A. 2012. Recent Developments in Erosion Science. Belgorod, Pabl. Constanta, 456 p. (in Russian). https://doi.org/10.13140/2.1.1029.9682.
Lopatin G.V. 1952. Nanosi rek SSSR [Sediments of the Rivers of the USSR]. Moscow, Pabl. Geografgiz, 363 p.
Makkaveev N.I. 1955. Ruslo reki i eroziya v yee basseine [Riverbed and Erosion in Its Basin]. Moscow, Pabl. Academy of Sciences of the USSR, 346 p.
Nebolsin S.I. 1928. Elementarnii poverkhnostnii stok [Elementary Surface Runoff]. Leningrad, Moscow, Pabl. Gidrometeorologicheskoe, 41 p.
Asadi H., Ghadiri H., Rose C.W., Yu B., Hussein J. 1999. An Investigation of Flow-Driven Soil Erosion Processes at Low Streampowers. Journal of Hydrology, 342(1–2): 134–142. https://doi.org/10.1016/j.jhydrol.2007.05.019
Asadi H., Moussavi A., Ghadiri H., Rose C.W. 2011. Flow-Driven Soil Erosion Processes and the Size Selectivity of Sediment. Journal of Hydrology, 406(1–2): 73–81. https://doi.org/10.1016/j.jhydrol.2011.06.010
Batista P.V.G., Davies J., Silva M.L.N., Quinton J.N. 2019. On the Evaluation of Soil Erosion Models: Are We Doing Enough? Earth-Science Reviews, 197: 102898. https://doi.org/10.1016/j.earscirev.2019.102898
Borrelli P., Alewell Ch., Alvarez P., Anache J.A.A., Baartman J., Ballabio C., Bezak N., Biddoccu M., Cerdà A., Chalise D., Chen S., Chen W., De Girolamo A.M., Gessesse G.D., Deumlich D., Diodato N., Efthimiou N., Erpul G., Fiener P., Freppaz M., Gentile F., Gericke A., Haregeweyn N., Hu B., Jeanneau A., Kaffas K., Kiani-Harchegani M., Villuendas I.L., Li Ch., Lombardo L., López-Vicente M., Lucas-Borja M.E., Märker M., Matthews F., Miao Ch., Mikoš M., Modugno S., Möller M., Naipal V., Nearing M., Owusu S., Panday D., Patault E., Patriche C.V., Poggio L., Portes R., Quijano L., Rahdari M.R., Renima M., Ricci G.F., Rodrigo-Comino J., Saia S., Samani A.N., Schillaci C., Syrris V., Kim H.S., Spinola D.N., Oliveira P.T., Teng H., Thapa R., Vantas K., Vieira D., Yang J.E., Yin Sh., Zema D.A., Zhao G., Panagos P. 2021. Soil Erosion Modelling: A Global Review and Statistical Analysis. Science of the Total Environment, 780: 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
Hairsine P.B, Sander G.C., Rose C.W., Parlange J.-Y., Hogarth W.L., Lisle I., Rouhipour H. 1999. Unsteady Soil Erosion Due to Rainfall Impact: a Model of Sediment Sorting on the Hillslope. Journal of Hydrology, 220(3–4): 115–128. https://doi.org/10.1016/S0022-1694(99)00068-2
Issa O.M., Bissonnais Y.L., Planchon O., Favis-Mortlock D., Silvera N., Wainwright J. 2006. Soil Detachment and Transport on Field- and Laboratory-Scale Interrill Areas: Erosion Processes and the Size-Selectivity of Eroded Sediment. Earth Surface Processes and Landforms, 31(8): 929–939.
Kinnell P.I.A. 2020. The Influence of Time and Other Factors on Soil Loss Produced by Rain-Impacted Flow Under Artificial Rainfall. Journal of Hydrology, 587: 125004. https://doi.org/10.1016/j.jhydrol.2020.125004
Lin J., Huang Y., Zhao G., Jiang F., Wang M.-K., Ge H. 2017. Flow-Driven Soil Erosion Processes and the Size Selectivity of Eroded Sediment on Steep Slopes Using Colluvial Deposits in a Permanent Gully. Catena, 157: 47–57. https://doi.org/10.1016/j.catena.2017.05.015
Neal T.H. 1938. Effect of Degree of Slope and Rainfall Characteristics on Runoff and Soil Erosion. Agricultural Engeneering. Research Bulletin, 280: 45 p.
Rienzi E.A., Fox J.F., Grove J.H., Matocha C.J. 2013. Interrill Erosion in Soils with Different Land Uses: The Kinetic Energy Wetting Effect on Temporal Particle Size Distribution. Catena, 107: 130–138. https://doi.org/10.1016/j.catena.2013.02.007
Zhang P., Yao W., Liu G., Xiao P., Sun W. 2020. Experimental Study of Sediment Transport Processes and Size Selectivity of Eroded Sediment on Steep Pisha Sandstone Slopes. Geomorphology, 363: 107211. https://doi.org/10.1016/j.geomorph.2020.107211
Abstract views: 31
Share
Published
How to Cite
Issue
Section
Copyright (c) 2024 Regional Geosystems

This work is licensed under a Creative Commons Attribution 4.0 International License.