Estimating the Spectral-Reflectance Parameters of Crops Located in Different Growing Conditions
DOI:
https://doi.org/10.52575/2712-7443-2023-47-3-417-428Keywords:
winter wheat, soil conditions, slope exposure, NDVI, Central Russian UplandAbstract
Estimating the influence of growing conditions on crop reflectance parameters is necessary for the development of approaches to the monitoring of arable land. The article presents the results of assessing the NDVI vegetation index for winter crops located on different types and subtypes of soils and on slopes of different exposures in the south of the Central Russian Upland. Soil type has a statistically significant effect on the winter crop vegetation index values. Crops located on chernozems are characterized by higher NDVI values than crops on gray forest soils during full period of active vegetation, from mid-April to the end of June. This feature characterizes crops on the slopes of northern and southern exposures. NDVI values of crops averaged over the period of active vegetation (from April to June) on chernozems are 3–4 % higher than on gray forest soils. NDVI values, averaged over the active vegetation period are higher of 2–3 % for winter crops on the south-facing slopes than for crops on the north-facing slopes. Winter wheat crops during the maximum vegetation index values are characterized by a decreasing NDVI in the series of soil subtypes "gray forest soils – dark gray forest soils – leached chernozems – podzolized chernozems – typical chernozems".
Acknowledgements: This research was funded by the Ministry of Science and Higher Education of the Russian Federation within the framework of State Assignment No. FZWG-2023-0011.
Downloads
References
Список литературы
Денисов П.В., Середа И.И., Трошко К.А., Лупян Е.А., Плотников Д.Е., Толпин В.А. 2021. Возможности и опыт оперативного дистанционного мониторинга состояния озимых культур на территории России. Современные проблемы дистанционного зондирования Земли из космоса, 18(2): 171–185. DOI: 10.21046/2070-7401-2021-18-2-171-185
Косолапов В.М., Трофимов И.А., Трофимова Л.С., Яковлева Е.П. 2015. Агроландшафты Центрального Черноземья. Районирование и управление. Москва, Издательский дом «Наука», 198 c.
Лебедева М.Г., Соловьев А.Б., Толстопятова О.С. 2015. Агроклиматическое районирование Белгородской области в условиях меняющегося климата. Научные ведомости Белгородского государственного университета. Серия: Естественные Науки, 9(206): 160–167.
Нечетова Ю.В., Нарожняя А.Г. 2010. Изучение овражно-балочной сети Белгородской области с применением ГИС-технологий. Землеустройство, кадастр и мониторинг земель, 11(71): 96–100.
Спивак Л.Ф., Витковская И.С., Батырбаева М.Ж., Кауазов А.М. 2015. Анализ результатов прогнозирования урожайности яровой пшеницы на основе временных рядов статистических данных и интегральных индексов вегетации. Современные проблемы дистанционного зондирования Земли из космоса, 12(2): 173–182.
Терехин Э.А. 2019. Сезонная динамика проективного покрытия растительности агроэкосистем на основе спектральной спутниковой информации. Современные проблемы дистанционного зондирования Земли из космоса, 16(4): 111–123. DOI: 10.21046/2070-7401-2019-16-4-111-123
Шинкаренко С.С., Бодрова, В.Н., Сидорова Н.В. 2019. Влияние экспозиции склонов на сезонную динамику вегетационного индекса NDVI посевных площадей. Известия Нижневолжского агроуниверситетского комплекса: наука и высшее профессиональное образование, 1(53):
–105. DOI: 10.32786/2071-9485-2019-01-12
Chen Y., Lu D., Moran E., Batistella M., Dutra L.V., Sanches I.D., da Silva R.F.B., Huang J., Luiz A.J.B., de Oliveira M.A.F. 2018. Mapping Croplands, Cropping Patterns, and Crop Types Using MODIS Time-Series Data. International Journal of Applied Earth Observation and Geoinformation, 69: 133–147. DOI: 10.1016/j.jag.2018.03.005
Gao L., Wang X., Johnson B.A., Tian Q., Wang Y., Verrelst J., Mu X., Gu X. 2020. Remote Sensing Algorithms for Estimation of Fractional Vegetation Cover Using Pure Vegetation Index Values: A Review. ISPRS Journal of photogrammetry and remote sensing, 159: 364–377. DOI: 10.1016/j.isprsjprs.2019.11.018
Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G. 2002. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote sensing of environment, 83(1–2):195–213. DOI: 10.1016/S0034-4257(02)00096-2
Imukova K., Ingwersen J., Streck T. 2015. Determining the Spatial and Temporal Dynamics of the Green Vegetation Fraction of Croplands Using High-Resolution RapidEye Satellite Images. Agricultural and Forest Meteorology, 206: 113–123. DOI: 10.1016/j.agrformet.2015.03.003
Jiang L., Liu Y., Wu S., Yang C. 2021. Analyzing Ecological Environment Change and Associated Driving Factors in China Based on NDVI Time Series Data. Ecological Indicators, 129: 107933. DOI: 10.1016/j.ecolind.2021.107933
Shammi S.A., Meng Q. 2021. Use Time Series NDVI and EVI to Develop Dynamic Crop Growth Metrics for Yield Modeling. Ecological Indicators, 121: 107124. DOI: 10.1016/j.ecolind.2020.107124
Tenreiro T.R., García-Vila M., Gómez J.A., Jiménez-Berni J.A., Fereres E. 2021. Using NDVI for the Assessment of Canopy Cover in Agricultural Crops within Modelling Research. Computers and Electronics in Agriculture, 182: 106038. DOI: 10.1016/j.compag.2021.106038
Wardlow B.D., Egbert S.L. 2010. A Comparison of MODIS 250-m EVI and NDVI Data for Crop Mapping: a Case Study for Southwest Kansas. International journal of remote sensing, 31:
–830. DOI: 10.1080/01431160902897858
Zhang J., Zhang L., Xu C., Liu W., Qi Y., Wo X. 2014. Vegetation Variation of Mid-Subtropical Forest Based on MODIS NDVI Data – A Case Study of Jinggangshan City, Jiangxi Province. Acta ecologica sinica, 34(1): 7–12. DOI: 10.1016/j.chnaes.2013.09.005
Zhao X., Wu T., Wang S., Liu K., Yang J. 2023. Cropland Abandonment Mapping at Sub-Pixel Scales Using Crop Phenological Information and MODIS Time-Series Images. Computers and Electronics in Agriculture, 208: 107763. DOI: 10.1016/j.compag.2023.107763
Abstract views: 66
Share
Published
How to Cite
Issue
Section
Copyright (c) 2023 Regional Geosystems
This work is licensed under a Creative Commons Attribution 4.0 International License.