State Assessing and GIS Modeling of the Post-Pyrogenic Dynamics of the Great Vasyugan Mire Site

Authors

  • Anna А. Sinyutkina Siberian Federal Scientific Centre of Agro-Bio Technologies of the Russian Academy of Sciences, Siberian Research Institute of Agriculture and Peat
  • Lyudmila P. Gashkova Siberian Federal Scientific Centre of Agro-Bio Technologies of the Russian Academy of Sciences, Siberian Research Institute of Agriculture and Peat

DOI:

https://doi.org/10.52575/2712-7443-2022-46-3-366–377

Keywords:

vegetation index, succession dynamics, Sentinel-2, microtopography, Sphagnum, surface burnout

Abstract

The study of the post-pyrogenic dynamics of vegetation cover is one of the key tasks in assessing the transformation of the global carbon cycle. The article presents estimates of the transformation of vegetation cover as a result of pyrogenic load, the current state and intensity of restoration of the pyrogenic area within the Great Vasyugan Mire five years after the fire. The study area includes the drained in 1980s and burned in 2016 site of the pine dwarf shrub sphagnum bog with area 5.5 km2. The study based on field research data carried out in 2021 on 15 plots within key site and Sentinel-2 data for period 2016–2021. We used Normalized Difference Vegetation Index (NDVI) to estimate the vegetation dynamic within sites with different intense of pyrogenic load. Field studies showed intensive overgrowth of Polytrichum strictum of burnt-out hollows, renewal of sphagnum mosses on hummocks with dead moss cover and burnt-out hollows with an average occurrence of 0.14, regrowth of dwarf shrubs, the appearance of birch, aspen and pine. The stabilization of NDVI values at a level close to the unburned mire occurred already 2–3 years after the wildfire due to the rapid renewal of shrubs and intensive overgrowth by species not characteristic to bogs (Betula pubescens, Populus tremula, Polytrichum strictum). Despite the high values of the vegetation index, the complete restoration of the ecosystem function of the bog – the accumulation of carbon 5 years after the fire has not yet occurred, which is manifested mainly in the low proportion of the main peat-forming plants of the bog – sphagnum mosses.

Acknowledgements: The research was carried out with financial support of the RFBR in the framework of the scientific project No. 18-44-700005 and was funded by the Ministry of Science and Higher Education of the Russian Federation under Research Project № 0778-2019-0005.

Downloads

Download data is not yet available.

Author Biographies

Anna А. Sinyutkina, Siberian Federal Scientific Centre of Agro-Bio Technologies of the Russian Academy of Sciences, Siberian Research Institute of Agriculture and Peat

senior researcher of the Siberian Federal Scientific Centre of Agro-Bio Technologies of the Russian Academy of Sciences, Siberian Research Institute of Agriculture and Peat,

Tomsk, Russia

Lyudmila P. Gashkova, Siberian Federal Scientific Centre of Agro-Bio Technologies of the Russian Academy of Sciences, Siberian Research Institute of Agriculture and Peat

senior researcher of the Siberian Federal Scientific Centre of Agro-Bio Technologies of the Russian Academy of Sciences, Siberian Research Institute of Agriculture and Peat,

Tomsk, Russia

References

Вомперский С.Э., Глухова Т.В., Смагина М.В., Ковалев А.Г. 2007. Условия и последствия пожаров в сосняках на осушенных болотах. Лесоведение, 6: 35–44.

Глухова Т.В., Сирин А.А. 2018. Потери почвенного углерода при пожаре на осушенном лесном верховом болоте. Почвоведение, 5: 580–588. DOI: 10.7868/S0032180X18050076.

Копотева Т.А., Купцова В.А. 2016. Влияние пожаров на функционирование фитоценозов торфяных болот Среднеамурской низменности. Экология, 1: 14–21. DOI: 10.7868/S0367059715060086.

Ландшафты болот Томской области. 2012. Под ред. Н.С. Евсеевой. Томск, Издательство научно-технической литературы, 400 с.

Малащук А.А., Филиппов Д.А. 2021. Постпирогенная динамика растительного покрова верхового болота Барское (Вологодская область). Трансформация экосистем, 4(1(11)): 104–121. DOI: 10.23859/estr-200512.

Сизов О.С., Цымбарович П.Р., Ежова Е.В., Соромотин А.В., Приходько Н.В. 2020. Оценка постпирогенной динамики тундровой растительности на севере Западной Сибири за последние 50 лет (1968–2018) на основе данных ДЗЗ детального и высокого разрешения. Современные проблемы дистанционного зондирования Земли из космоса, 17(4): 137–153. DOI: 10.21046/2070-7401-2020-17-4-137-153.

Синюткина А.А., Гашкова Л.П., Малолетко А.А., Магур М.Г., Харанжевская Ю.А. 2018. Трансформация поверхности и растительного покрова осушенных верховых болот юго-востока Западной Сибири. Вестник Томского государственного университета. Биология, 43: 196–223. DOI: 10.17223/19988591/43/10.

Ackley C., Tank S.E., Haynes K.M., Rezanezhad F., McCarter C., Quintona W.L. 2021. Coupled Hydrological and Geochemical Impacts of Wildfire in Peatland-Dominated Regions of Discontinuous Permafrost. Science of the Total Environment, 782: 146841. DOI: 10.1016/j.scitotenv.2021.146841.

Amani M., Salehi B., Mahdavi S., Brisco B. 2018. Spectral Analysis of Wetland Using Multi-Sourse Optical Satellite Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 119–136. DOI: 10.1016/j.isprsjprs.2018.07.005.

Bacon K.L., Baird A.J., Blundell A., Bourgault M.-A., Chapman P.J., Dargie G., Dooling G.P., Gee C., Holden J., Kelly T., McKendrick-Smith K.A., Morris P.J., Noble A., Palmer S.M., Quillet A., Swindles G.T., Watson E.J., Young D.M. 2017. Questioning ten common assumptions about peatlands. Mire Peat, 19(12): 1–23. DOI: 10.19189/MaP.2016.OMB.253.

Bragazza L., Buttler A., Siegenthaler A., Mitchell E.A.D. 2009. Plant litter decomposition and nutrient release in peatlands. Carbon Cycling in Northern Peatlands, 184: 99–110. DOI: 10.1029/2008GM000815.

Gunnarsson U. 2005. Global patterns of Sphagnum productivity. Journal of Bryology, 27(3): 269–279. DOI: 10.1179/174328205X70029.

Peatlands mapping and monitoring – Recommendations and technical overview. 2020. Rome, FAO, 78 p.

Feurdean A., Florescu G., Tantau I., Vanniere B., Diaconu A.-C., Pfeiffer M., Warren D., Hutchinson S. M., Gorina N., Gałka M., Kirpotin S. 2020. Recent Fire Regime in the Southern Boreal Forests of Western Siberia is Unprecedented in the Last Five Millennia. Quaternary Science Reviews, 244: 106495. DOI: 10.1016/j.quascirev.2020.106495.

Kettridge N., Humphrey R.E., Smith J.E., Lukenbach M.C., Devito K.J., Petrone R.M., Waddington J.M. 2014. Burned and Unburned Peat Water Repellency: Implications for Peatland Evaporation Following Wildfire. Journal of Hydrology, 513: 335–341. DOI: 10.1016/j.jhydrol.2014.03.019.

Knox S.H., Dronova I., Sturtevant C., Oikawa P.Y., Matthes J.H., Verfaillie J., Baldocchi D. 2017. Using Digital Camera and Landsat Imagery with Eddy Covariance Data to Model Gross Primary Production in Restored Wetlands. Agricultural and Forest Meteorology, 237–238: 233–245. DOI: 10.1016/j.agrformet.2017.02.020.

Laine A.M., Mehtatalo L., Tolvanen A., Frolking S., Tuittil E.-S. 2019. Impacts of Drainage, Restoration and Warming on Boreal Wetland Greenhouse Gas Fluxes. Science of the Total Environment, 647: 169–181. DOI: 10.1016/j.scitotenv.2018.07.390.

Lees K.J., Quaife T., Artz R.R.E., Khomik M., Clark J.M. 2018. Potential for Using Remote Sensing to Estimate Carbon Fluxes Across Northern Peatlands – A Review. Science of the Total Environment, 615: 857–874. DOI: 10.1016/j.scitotenv.2017.09.103.

Lin S., Liu Ya., Huang X. 2021. Climate-Induced Arctic-Boreal Peatland Fire and Carbon Loss in the 21st Century. Science of the Total Environment, 796: 148924. DOI: 10.1016/j.scitotenv.2021.148924.

Maloletko A.A., Sinyutkina A.A., Gashkova L.P., Kharanzhevskaya Yu.A., Magur M.G., Voistinova E.S., Ivanova E.S., Chudinovskaya L.A., Khaustova A.A. 2018. Effects of Long-Term Drainage on Vegetation, Surface Topography, Hydrology and Water Chemistry of North-Eastern Part of Great Vasyugan Mire (Western Siberia). IOP Conference Series: Earth and Environmental Science, 211: 012033. DOI:10.1088/1755-1315/211/1/012033.

Minayeva T.Y., Bragg O.M., Sirin A.A. 2017. Towards Ecosystem-Based Restoration of Peatland Biodiversity. Mire Peat, 19(1): 1–36. DOI: 10.19189/MaP.2013.OMB.150.

Minkkinen K., Laine J. 1998. Long-Term Effect of Forest Drainage on the Peat Carbon Stores of Pine Mires in Finland. Canadian Journal of Forest Research, 28(9): 1267–1275. DOI: 10.1139/x98-104.

Moore P.A., Lukenbach M.C., Kettridge N., Petrone R.M., Devito K.J., Waddington J.M. 2017. Peatland Water Repellency: Importance of Soil Water Content, Moss Species, and Burn Severity. Journal of Hydrology, 554: 656–665. DOI: 10.1016/j.jhydrol.2017.09.036.

Rein G., Huang X. 2021. Smouldering Wildfires in Peatlands, Forests and the Arctic: Challenges and Perspectives. Environmental Science and Health, 24: 100296. DOI:10.1016/j.coesh.2021.100296.

Sinyutkina A. 2021. Drainage Consequences and Self-Restoration of Drained Raised Bogs in the South-Eastern Part of Western Siberia: Peat Accumulation and Vegetation Dynamics. Catena, 205: 105464. DOI: 10.1016/j.catena.2021.105464.

Sinyutkina A.A., Gashkova L.P., Koronatova N.G., Maloletko A.A., Mironycheva-Tokareva N.P., Russkikh I.V., Serebrennikova O.V., Strel'nikova E.B., Vishnyakova E.K. Kharanzhevskaya Yu.A. 2020. Post-Fire Ecological Consequences within the Drained Site of the Great Vasyugan Mire: Retrospective Water-Thermal Regime and Pyrogenic Disturbance Estimation. IOP Conference Series: Earth and Environmental Science, 408: 012037. DOI:10.1088/1755-1315/408/1/012037.

Thompson D.K., Waddington J.M. 2013. Wildfire Effects on Vadose Zone Hydrology in Forested Boreal Peatland Microforms. Journal of Hydrology, 486: 48–56. DOI: 10.1016/j.jhydrol.2013.01.014.


Abstract views: 94

Share

Published

2022-09-30

How to Cite

SinyutkinaA. А., & Gashkova, L. P. (2022). State Assessing and GIS Modeling of the Post-Pyrogenic Dynamics of the Great Vasyugan Mire Site. Regional Geosystems, 46(3), 366–377. https://doi.org/10.52575/2712-7443-2022-46-3-366–377

Issue

Section

Earth Sciences