Multifractal Models of Impact on the Aquatic Ecosystem: Response, Risk, Management
DOI:
https://doi.org/10.52575/2712-7443-2022-46-1-71-80Keywords:
algoremediation, aquatic ecosystem, hydrobiocenosis, multifractal dynamics, risk managementAbstract
Natural and natural-anthropogenic ecosystems and landscapes are complex emergent systems. For their adequate description, assessment of the state and control, it is necessary to use the power-law distribution of parameters. Deterministic (averaged) parameters greatly simplify the description of such a system and do not allow to fully determine the probability of negative changes (risk) occurring in the ecosystem under anthropogenic impacts. The use of the fractal approach in ecological research solves this problem. The aim of the work is to develop a multifractal model of the impact on the aquatic ecosystem based on the principles of self-organization of the natural ecosystem. The total response of ecosystems to anthropogenic impact is proposed to be assessed by superimposing its multifractal image on the selected forms of critical organization of the ecosystem, which meets the limits of self-healing of the structure of hydrobiocenosis. Violation of ecosystem self-organization is equivalent to violation of fractality, which ensures its viability in changing environmental conditions. The formalization of indicators regulating the maximum permissible environmental load (PDN), when human economic activity does not exceed the thresholds of ecosystem stability, has been carried out. This makes it possible, using the example of the algoremediation of reservoirs, to provide the most acceptable parameters of economic activity and control over the restoration of technogenically disturbed aquatic ecosystems.
Acknowledgment
He work was carried out according to the state task "Assessment of physical, geographical, hydrological and biotic changes in the environment and their consequences for creating the foundations of sustainable nature management". FMGE-2019-0007 AAAAA-A19-119021990093-8.
Downloads
References
Арнольд В.И. 2004. «Жесткие» и «мягкие» математические модели. М., Изд-во МЦНМО, 32 с.
Баскакова А.Г., Иванова Е.Ю., Куролап С.А. 2020. Оценка содержания генотоксических соединений в поверхностных водах Донского бассейна на территории Воронежской области. Региональные геосистемы, 44 (2): 221–230. DOI 10.18413/2712-7443-2020-44-2-221-230.
Воробьев Ю.Л., Малинецкий Г.Г., Махутов Н.А. 2000. Управление риском и устойчивое развитие: Человеческое измерение. Известия высших учебных заведений. Прикладная нелинейная динамика, 8 (6): 12–26.
Иванова Е.Ю. 2020. Аккумуляция генотоксических соединений некоторыми компонентами водных и прибрежных экосистем Воронежского водохранилища. Региональные геосистемы, 44 (1): 113–120. DOI 10.18413/2712-7443-2020-44-1-113-120.
Коронкевич Н.И., Мельник К.С. 2017. Изменение стока реки Москвы в результате антропогенных воздействий. Водные ресурсы, 44 (1): 3–14. DOI: 10.7868/S0321059617010072.
Кочуров Б.И., Ивашкина И.В., Ермакова Ю.И. 2021. Самоорганизация и саморазвитие урбогеосистем. География и природные ресурсы, 42 (3): 37–44. DOI: 10.15372/GIPR20210304.
Кульнев В.В., Насонов А.Н., Цветков И.В., Межова Л.А. 2021. Оценка техногенной нагруженности Нижнетагильского городского пруда и управление геоэкологическими рисками на основе мультифрактальной динамики. Известия Саратовского университета. Новая серия. Серия: Науки о Земле, 21 (1): 4–11. DOI: 10.18500/1819-7663-2021-21-1-4-11.
Кульнев В.В., Почечун В.А. 2016. Применение альголизации питьевых водоемов Нижнетагильского промышленного узла. Медицина труда и промышленная экология, 1: 20–22.
Лисецкий Ф.Н., Дегтярь А.В., Буряк Ж.А., Павлюк Я.В., Нарожняя А.Г., Землякова А.В., Маринина О.А. 2015. Реки и водные объекты Белогорья. Белгород, Константа, 362 с.
Подгорный К.А. 2017. Требования и подходы к разработке биологических индикаторов и проведению интегрированного анализа состояния водных экосистем: обзор. Труды АтлантНИРО, 1 (4): 5–45
Трубецков Д.И. 2011. Феномен математической модели Лотки-Вольтерры и сходных с ней. Известия высших учебных заведений. Прикладная нелинейная динамика, 19 (2): 69–88. DOI: 10.18500/0869-6632-2011-19-2-69-88.
Ясинский С.В., Гуров Ф.Н., Шилькрот Г.С. 2007. Метод оценки выноса биогенных элементов в овражно-балочную и речную сеть малой реки. Известия Российской академии наук. Серия географическая, 4: 44–53.
Ясинский С.В., Сидорова М.В. 2018. Динамика водоёмкости в России и её регионах. Вопросы географии, 145: 406–413.
Koronkevich N.I., Barabanova E.A., Georgiadi A.G., Zaitseva I.S. 2020. Environmental and Economic Indicators of Anthropogenic Impacts on Water Resources in Russia and the World. Herald of the Russian Academy of Sciences, 90 (4), 428–436. DOI: 10.1134/S1019331620040103.
Krupa E., Barinova S., Romanova S., Aubakirova M., Ainabaeva N. 2020. Planktonic invertebrates in the assessment of long-term change in water quality of the sorbulak wastewater disposal system (Kazakhstan). Water, 12 (12): 3409. DOI:10.3390/w12123409.
Moon B.-H., Seo G.-T., Jang D.-J., Kim S.-S. 2007. Size and fractal dimension of particles in the River Nakdong. Water Science and Technology, 55 (1–2): 113–120. DOI: 10.2166/wst.2007.060.
Wang X.J., Jiang R.G., Xie J.C., Wang Y.P., Zhang Y.J., Wang J., Wen C.C. 2018. Spatiotemporal variability of runoff using fractal dimension in the Weihe River Basin. IOP Conference Series: Earth and Environmental Science, 191 (1): 012059. DOI: 10.1088/1755-1315/191/1/012059.
Zhiltsov S.S., Zonn I.S., Semenov A.V., Grishin O.E., Markova E.A. 2020. Role of water resources in the modern world. The Handbook of Environmental Chemistry, 105: 13–29. DOI: 10.1007/698_2020_598.
Abstract views: 155
Share
Published
How to Cite
Issue
Section
Copyright (c) 2022 REGIONAL GEOSYSTEMS
This work is licensed under a Creative Commons Attribution 4.0 International License.