Результаты мониторинга концентрации и потоков углекислого газа в г. Белгороде (2023–2024 гг.)
DOI:
https://doi.org/10.52575/2712-7443-2025-49-3-462-476Ключевые слова:
городские экосистемы, углекислый газ, углеродный баланс, чистый экосистемный обмен, метод турбулентных пульсаций, эколого-климатические станции, карбоновый полигонАннотация
В статье рассматриваются особенности и результаты ведения мониторинга потоков углекислого газа в городских условиях с использованием метода турбулентных пульсаций на площадке карбонового полигона НИУ «БелГУ». Схема мониторинга включает измерения на двух уровнях эколого-климатических станций (ЭКС), установленных на башне на высотах 10 (ЭКС_10) и 49 (ЭКС_49) м. ЭКС_10 охватывает измерениями преимущественно экспериментальную площадку полигона, а ЭКС_49 – участок Юго-Западного района г. Белгорода, на контакте различных типов городских экосистем: ботанического сада, участков малоэтажной и многоэтажной застройки. По результатам измерений в 2023 и 2024 гг. установлено, что урбанизированные экосистемы Белгорода на исследуемой территории имеют положительный баланс потоков углерода в атмосферном воздухе на протяжении всего года, но в мае баланс близок к нейтральному. Выявлены особенности годичной динамики чистого экосистемного обмена, её статистические характеристики, в том числе цикличность разной размерности. Среднегодовой уровень потоков углекислого газа в 2023 году составил 3,46 ± 14,07 мкмоль/м2∙с, в 2024 году 3,52 ± 9,54. Измерения были дополнены регистрацией климатических параметров, что было учтено в интерпретации данных за исследуемый период. Полученные результаты обосновывают целесообразность ведения мониторинга потоков атмосферного углерода в городских экосистемах: в теоретическом отношении – в связи со значительным объёмом новой научной информации, практическом отношении – для контроля эффективности мер, направленных на экологическую оптимизацию городской среды.
Благодарности: исследования выполнены при поддержке Российского научного фонда, проект № 23-17-00169 (https://rscf.ru/project/23-17-00169/).
Скачивания
Библиографические ссылки
Список источников
Архив погоды в Белгороде / им. В.Г. Шухова (аэропорт). rp5.ru расписание погоды. Электронный ресурс. URL: https://rp5.ru/Архив_погоды_в_Белгороде,_им._В.Г._Шухова_(аэропорт) (дата обращения 20.07.2025).
Доклад об особенностях климата на территории Российской Федерации за 2023 год. 2024. Москва, 104 c. Доклад об особенностях климата на территории Российской Федерации за 2024 год. 2025. Москва, 104 с. Карбоновые полигоны. Минобрнауки России. Электронный ресурс. URL: https://minobrnauki.gov.ru/action/poligony/ (дата обращения 20.07.2025).
Каталог эколого-климатических станций России. Институт проблем экологии и эволюции им. А.Н. Северцова РАН (ИПЭЭ РАН). Электронный ресурс. URL: https://sev- in.ru/sites/default/files/2025-06/EC%20буклет_05.2025.pdf (дата обращения 20.07.2025).
Мониторинг потоков парниковых газов в России. Сайт российской сети экологических наблюдений. Электронный ресурс. URL: https://ruflux.net/ (дата обращения 20.07.2025).
О проекте. Карбоновые полигоны Российской федерации. Электронный ресурс. URL: https://carbon-polygons.ru/about/ (дата обращения 20.07.2025).
EDGAR – Emissions Database for Global Atmospheric Research. GHG emissions of all world countries. 2023 report. Electronic resource. URL: https://edgar.jrc.ec.europa.eu/report_2023 (access date: 20.07.2025).
Our World in Data. Urban area over the long-term. Electronic resource. URL: https://ourworldindata.org/grapher/urban-area-long-term?tab=table (access date: 20.07.2025).
Список литературы
Братков В.В., Бекмурзаева Л.Р. 2025. Оценка запаса и бюджета углерода на участке карбонового полигона «Зелёная зона г. Грозный». Юг России: экология, развитие. 20(1): 107–116. https://doi.org/10.18470/1992-1098-2025-1-10
Бурба Г.Г., Курбатова Ю.А., Куричева О.А., Авилов В.К., Мамкин В.В. 2016. Метод турбулентных пульсаций. Краткое практическое руководство. М., ИПЭЭ им. А.Н. Северцова РАН, 230 с.
Голеусов П.В. 2024. Результаты измерения концентрации и потоков углекислого газа в Белгородской агломерации. Московский экономический журнал, 9(1): 114–122. https://doi.org/10.55186/2413046X_2023_9_1_33
Куричева О.А., Максимов А.П., Максимов Т.Х., Мамкин В.В., Марунич А.С., Мигловец М.Н., Михайлов О.А., Панов А.В., Прокушкин А.С., Сиденко Н.В., Шилкин А.В., Лапшина Е.Д., Курганова И.Н., Авилов В.К., Варлагин А.В., Гитарский М.Л., Дмитриченко А.А., Дюкарев Е.А., Загирова С.В., Замолодчиков Д.Г., Зырянов В.И., Карелин Д.В., Карсанаев С.В., Курбатова Ю.А. 2023. Мониторинг экосистемных потоков парниковых газов на территории России: сеть Ruflux. Известия Российской академии наук. Серия географическая, 87(4): 512–535. https://doi.org/10.31857/S2587556623040052
Сатосина Е.М., Мамадиев Н.А., Махмудова Л.Ш., Керимов И.А., Курбатова Ю.А., Ольчев А.В. 2023. Карбоновый полигон Чеченской Республики: IV. Пилотные измерения потоков парниковых газов. Грозненский естественнонаучный бюллетень, 8(2(32)): 53–64. https://doi.org/10.25744/genb.2023.97.15.008
Crawford B., Christen A. 2015. Spatial Source Attribution of Measured Urban Eddy Covariance CO2 Fluxes. Theoretical and Applied Climatology, 119: 733–755. https://doi.org/10.1007/s00704-014-1124-0 Feigenwinter C., Vogt R., Christen A. 2012. Eddy Covariance Measurements Over Urban Areas. In: Eddy Covariance. Springer Atmospheric Sciences. Ed. by M. Aubinet, T. Vesala, D. Papale. Springer, Dordrecht: 377–397. https://doi.org/10.1007/978-94-007-2351-1_16
Horne J.P., Richardson S.J., Murphy S.L., Kenion H.C., Haupt B.J., Ahlswede B.J., Miles N.L., Davis K.J. 2025. Urban Eddy Covariance – The INFLUX Network. Earth System Science Data. Discussion [preprint]. https://doi.org/10.5194/essd-2025-232
Huizhi L., Jianwu F., Jarvi L., Vesala T. 2012. Four-Year (2006–2009) Eddy Covariance Measurements of CO2 Flux Over an Urban Area in Beijing. Atmospheric Chemistry and Physics, 12(17): 7881– 7892. https://doi.org/10.5194/acp-12-7881-2012
Järvi L., Rannik Ü., Kokkonen T. V., Kurppa M., Karppinen A., Kouznetsov R.D., Rantala P., Vesala T., Wood C.R. 2018. Uncertainty of Eddy Covariance Flux Measurements Over an Urban Area Based on Two Towers. Atmospheric Measurement Techniques, 11(10): 5421–5438. https://doi.org/10.5194/amt-11-5421-2018
Li Y., Cai X., Li M., Jiang Z., Tang F., Zhang S., Shui T., Zhu S. 2024. Review of the Urban Carbon Flux and Energy Balance Based on the Eddy Covariance Technique. Aerosol and Air Quality Research, 24: 230245. https://doi.org/10.4209/aaqr.230245
Matthews B., Schume H. 2022. Tall Tower Eddy Covariance Measurements of CO2 Fluxes in Vienna, Austria. Atmospheric Environment, 274: 118941 https://doi.org/10.1016/j.atmosenv.2022.118941
Min K.-E., Mun J., Perdigones B., Lee S., Kwak K.-H. 2022. Insights on Estimating Urban CO2 Emissions Using Eddy-Covariance Flux Measurements. Atmospheric Chemistry and Physics. Discussion [preprint]. https://doi.org/10.5194/acp-2022-205
Rana G., Martinelli N., Famulari D., Pezzati F., Muschitiello C., Ferrara R. 2021. Representativeness of Carbon Dioxide Fluxes Measured by Eddy Covariance over a Mediterranean Urban District with Equipment Setup Restrictions. Atmosphere, 12(2): 197. https://doi.org/10.3390/atmos12020197
Schmutz M., Vogt R., Feigenwinter C., Parlow E. 2016. Ten Years of Eddy Covariance Measurements in Basel, Switzerland: Seasonal and Interannual Variabilities of Urban CO2 Mole Fraction and Flux. Journal of Geophysical Research: Atmospheres, 121(14): 8649–8667. https://doi.org/10.1002/2016JD025063
Stagakis S., Feigenwinter C., Vogt R., Kalberer M. 2022. A High-Resolution Monitoring Approach of Urban CO2 Fluxes. Part 1 – Bottom-up Model Development. Science of the Total Environment, 858(3): 160216. https://doi.org/10.1016/j.scitotenv.2022.160216
Stagakis S., Feigenwinter C., Vogt R., Brunner D., Kalberer M. 2023. A High-Resolution Monitoring Approach of Urban CO2 Fluxes. Part 2 – Surface Flux Optimisation Using Eddy Covariance Observations. Science of the Total Environment, 903: 166035.
https://doi.org/10.1016/j.scitotenv.2023.166035
Ward H.C., Kotthaus S., Grimmond C.S.B., Bjorkegren A., Wilkinson M., Morrison W.T.J., Evans J.G., Morison J.I.L., Iamarino M. 2015. Effects of Urban Density on Carbon Dioxide Exchanges: Observations of Dense Urban, Suburban and Woodland Areas of Southern England. Environmental Pollution, 198: 186–200. https://doi.org/10.1016/j.envpol.2014.12.031
Wei T., Wu J., Chen S. 2021. Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide. Frontiers in Sustainable Cities, 3: 696381. https://doi.org/10.3389/frsc.2021.696381
References
Bratkov V.V., Bekmurzaeva L.R. 2025. Assessment of the Carbon Stock and Budget at the Grozny Green Zone Carbon Landfill Site. South of Russia: ecology, development. 20(1): 107–116 (in Russian). https://doi.org/10.18470/1992-1098-2025-1-10
Burba G.G., Kurbatova Yu.A., Kuricheva O.A., Avilov V.K., Mamkin V.V. 2016. Metod turbulentny`kh pul`satcii`. Kratkoe prakticheskoe rukovodstvo [Method of Turbulent Pulsations. Brief Practical Guide]. Moscow, Pabl. Severtsov Institute of Economics and Evolution RAS, 230 p.
Goleusov P.V. 2024. Measurement Results of Carbon Dioxide Concentrations and Fluxes in the Belgorod Agglomeration. Moscow Economic Journal, 9(1): 114–122 (in Russian). https://doi.org/10.55186/2413046X_2023_9_1_33
Kuricheva O.A., Maksimov A.P., Maksimov T.Kh., Mamkin V.V., Marunich A.S., Miglovets M.N., Mikhailov O.A., Panov A.V., Prokushkin A.S., Sidenko N.V., Shilkin A.V., Lapshina E.D., Kurganova I.N., Avilov V.K., Varlagin A.V., Gitarsky M.L., Dmitrichenko A.A., Dyukarev E.A., Zagirova S.V., Zamolodchikov D.G., Zyryanov V.I., Karelin D.V., Karsanaev S.V., Kurbatova Yu.A. 2023. Ruflux: the Network of the Eddy Covariance Sites in Russia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 87(4): 512–535 (in Russian). https://doi.org/10.31857/S2587556623040052
Satosina E.M., Mamadiev N.A., Makhmudova L.Sh., Kerimov I.A., Kurbatova Yu.A., Olchev A.V. 2023. Carbon Polygon of the Chechen Republic: IV. Pilot Measurements of Greenhouse Gas Flows. Grozny Natural Science Bulletin, 8(2(32)): 53–64 (in Russian). https://doi.org/10.25744/genb.2023.97.15.008
Crawford B., Christen A. 2015. Spatial Source Attribution of Measured Urban Eddy Covariance CO2 Fluxes.
Theoretical and Applied Climatology, 119: 733–755. https://doi.org/10.1007/s00704-014-1124-0 Feigenwinter C., Vogt R., Christen A. 2012. Eddy Covariance Measurements Over Urban Areas. In: Eddy Covariance. Springer Atmospheric Sciences. Ed. by M. Aubinet, T. Vesala, D. Papale. Springer, Dordrecht: 377–397. https://doi.org/10.1007/978-94-007-2351-1_16
Horne J.P., Richardson S.J., Murphy S.L., Kenion H.C., Haupt B.J., Ahlswede B.J., Miles N.L., Davis K.J. 2025. Urban Eddy Covariance – The INFLUX Network. Earth System Science Data. Discussion [preprint]. https://doi.org/10.5194/essd-2025-232
Huizhi L., Jianwu F., Jarvi L., Vesala T. 2012. Four-Year (2006–2009) Eddy Covariance Measurements of CO2 Flux Over an Urban Area in Beijing. Atmospheric Chemistry and Physics, 12(17): 7881– 7892. https://doi.org/10.5194/acp-12-7881-2012
Järvi L., Rannik Ü., Kokkonen T. V., Kurppa M., Karppinen A., Kouznetsov R.D., Rantala P., Vesala T., Wood C.R. 2018. Uncertainty of Eddy Covariance Flux Measurements Over an Urban Area Based on Two Towers. Atmospheric Measurement Techniques, 11(10): 5421–5438. https://doi.org/10.5194/amt-11-5421-2018
Li Y., Cai X., Li M., Jiang Z., Tang F., Zhang S., Shui T., Zhu S. 2024. Review of the Urban Carbon Flux and Energy Balance Based on the Eddy Covariance Technique. Aerosol and Air Quality Research, 24: 230245. https://doi.org/10.4209/aaqr.230245
Matthews B., Schume H. 2022. Tall Tower Eddy Covariance Measurements of CO2 Fluxes in Vienna, Austria. Atmospheric Environment, 274: 118941 https://doi.org/10.1016/j.atmosenv.2022.118941
Min K.-E., Mun J., Perdigones B., Lee S., Kwak K.-H. 2022. Insights on Estimating Urban CO2 Emissions Using Eddy-Covariance Flux Measurements. Atmospheric Chemistry and Physics. Discussion [preprint]. https://doi.org/10.5194/acp-2022-205
Rana G., Martinelli N., Famulari D., Pezzati F., Muschitiello C., Ferrara R. 2021. Representativeness of Carbon Dioxide Fluxes Measured by Eddy Covariance over a Mediterranean Urban District with Equipment Setup Restrictions. Atmosphere, 12(2): 197. https://doi.org/10.3390/atmos12020197
Schmutz M., Vogt R., Feigenwinter C., Parlow E. 2016. Ten Years of Eddy Covariance Measurements in Basel, Switzerland: Seasonal and Interannual Variabilities of Urban CO2 Mole Fraction and Flux. Journal of Geophysical Research: Atmospheres, 121(14): 8649–8667. https://doi.org/10.1002/2016JD025063
Stagakis S., Feigenwinter C., Vogt R., Kalberer M. 2022. A High-Resolution Monitoring Approach of Urban CO2 Fluxes. Part 1 – Bottom-up Model Development. Science of the Total Environment, 858(3): 160216. https://doi.org/10.1016/j.scitotenv.2022.160216
Stagakis S., Feigenwinter C., Vogt R., Brunner D., Kalberer M. 2023. A High-Resolution Monitoring Approach of Urban CO2 Fluxes. Part 2 – Surface Flux Optimisation Using Eddy Covariance Observations. Science of The Total Environment, 903: 166035.
https://doi.org/10.1016/j.scitotenv.2023.166035
Ward H.C., Kotthaus S., Grimmond C.S.B., Bjorkegren A., Wilkinson M., Morrison W.T.J., Evans J.G., Morison J.I.L., Iamarino M. 2015. Effects of Urban Density on Carbon Dioxide Exchanges: Observations of Dense Urban, Suburban and Woodland Areas of Southern England. Environmental Pollution, 198: 186–200. https://doi.org/10.1016/j.envpol.2014.12.031
Wei T., Wu J., Chen S. 2021. Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide. Frontiers in Sustainable Cities, 3: 696381. https://doi.org/10.3389/frsc.2021.696381
Просмотров аннотации: 98
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2025 Региональные геосистемы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
