Тренды исследований мобильности населения –компонент пространственного поведения в городской среде

Авторы

  • Арсений Дмитриевич Гдалин Российский государственный педагогический университет им. А.И. Герцена

DOI:

https://doi.org/10.52575/2712-7443-2024-48-3-354-367

Ключевые слова:

мобильность, хроногеография, пространственно-временной подход, большие данные, городская среда, миграции

Аннотация

Статья представляет обзор современных направлений исследований мобильности населения как компонента пространственного поведения в городской среде. Внимание фокусируется на пространственно-временном подходе к исследованию мобильности городского населения в рамках хроногеографии в связи с развитием информационно-коммуникационных технологий. Понимание особенностей индивидуального пространственного поведения и устойчивых моделей поведения различных страт городского сообщества имеет важное значение для создания безопасной, комфортной и доступной для жителей городской среды. В свою очередь, сами особенности городской социосреды оказывают влияние на пространственные модели поведения жителей мегаполисов. Целью исследования является совершенствование теоретико-методологического и концептуального подходов к формированию оптимальной городской среды в условиях усложнения форм и систем мобильности населения, увеличения радиусов расселения в пределах агломераций, удаления мест приложения труда. В задачи исследования в том числе входит анализ направлений современных исследований мобильности как совокупности социальных, экономических и географических факторов, определяющих конкретные пространственно-временные траектории конкретных людей и ее важной роли в формировании городской социосреды. В результате исследования рассмотрены различные подходы к понятию мобильности населения как объекту современных хроногеографических исследований.

Скачивания

Данные скачивания пока недоступны.

Биография автора

Арсений Дмитриевич Гдалин, Российский государственный педагогический университет им. А.И. Герцена

Аспирант кафедры экономической географии

E-mail: ars-gdalin@yandex.ru

Библиографические ссылки

Бабкин Р.А. 2020. Динамика расселения Московского региона по данным сотовых операторов. Дис. … канд. геогр. наук. М., 234 с.

Давыдкина Л.В. 2018. Образ жизни в измерениях пространственной мобильности: методология сбора и анализа данных о перемещениях горожан. Современные исследования социальных проблем, 9(12): 41–61. https://doi.org/10.12731/2218-7405-2018-12-41-61

Давыдкина Л.В., Семенова Т.В. 2018. Психологические аспекты образа жизни и социальной мобильности. Научное отражение, 4(14): 32–39.

Махрова А.Г., Бабкин Р.А. 2019. Методические подходы к делимитации границ Московской агломерации на основе данных сотовых операторов. Региональные исследования, 2(64): 48–57. https://doi.org/10.5922/1994-5280-2019-2-5.

Старикова А.В., Демидова Е.Е. 2019. Пространственная мобильность и цифровизация: роль новых ценностей в общественной жизни и влияние на миграции населения. В кн.: Цифровизация общества и будущее христианства. Материалы V Международной научной конференции, Москва, 24 января 2019. М., Издательство Православного Свято-Тихоновского гуманитарного университета: 115–128.

Badr H.S., Du H., Marshall M., Dong E., Squire M.M., Gardner L.M. 2020. Association Between Mobility Patterns and COVID-19 Transmission in the USA: a Mathematical Modelling Study. The Lancet Infectious Diseases, 20(11): 1247–1254. https://doi.org/10.1016/S1473-3099(20)30553-3

Bagrow J.P., Wang D., Barabasi A.L. 2011. Collective Response of Human Populations to Large-Scale Emergencies. PloS one, 6(3): e17680. https://doi.org/10.1371/journal.pone.0017680

Batty M. 2013. The New Science of Cities. Cambridge, MA, United States, MIT press, 520 p. https://doi.org/10.1080/13658816.2014.937717

Chen Y.C., Dobra A. 2020. Measuring Human Activity Spaces from GPS Data with Density Ranking and Summary Curves. The Annals of Applied Statistics, 14(1): 409–432. https://doi.org/10.1214/19-AOAS1311.

Colleoni M., Pucci P. 2016. Understanding Mobilities for Designing Contemporary Cities. Switzerland, Springer International Publishing, 274 p.

Colmenero F.F., Cruz R.A.C. 2020. Analysis and Proposal of Sustainable Urban Mobility: Accessibility to the Cultural Heritage of the City of Guanajuato; Gto. VITRUVIO: International Journal of Architectural Technology and Sustainability, 5(1): 17–35.

Edwards D., Griffin T. 2013. Understanding Tourists’ Spatial Behaviour: GPS Tracking as an Aid to Sustainable Destination Management. Journal of Sustainable Tourism, 21(4): 580–595. https://doi.org/10.1080/09669582.2013.776063

Flaxman S., Mishra S., Gandy A., Unwin H.J.T., Mellan T.A., Coupland H., Whittaker Ch., Zhu H., Berah T., Eaton J.W., Monod M., Ghani A.C., Donnelly C.A., Riley S., Vollmer M.A.C., Ferguson N.M., Okell L.C., Bhatt S. 2020. Estimating the Effects of Non-Pharmaceutical Interventions on COVID-19 in Europe. Nature, 584(7820): 257–261. https://doi.org/10.1038/s41586-020-2405-7

Freitas V.L.S., Konstantyner T.C.R.O., Mendes J.F., Sepetauskas C.S.N., Santos L.B.L. 2020. The Correspondence Between the Structure of the Terrestrial Mobility Network and the Spreading of COVID-19 in Brazil. Cadernos de Saúde Pública, 36: e00184820.

Griffiths G., Johnson S.D., Chetty K. 2017. UK-Based Terrorists' Antecedent Behavior: A Spatial and Temporal Analysis. Applied geography, 86: 274–282. https://doi.org/ 10.1016/j.apgeog.2017.06.007

Hipp J.R., Bates Ch., Lichman M., Smyth P. 2019. Using Social Media to Measure Temporal Ambient Population: Does it Help Explain Local Crime Rates? Justice Quarterly, 36(4): 718–748. https://doi.org/10.1080/07418825.2018.1445276

Huang L., Yang Y., Gao H., Zhao X., Du Zh. 2018. Comparing Community Detection Algorithms in Transport Networks Via Points of Interest. IEEE Access, 6: 29729-29738. https://doi.org/10.1109/ACCESS.2018.2841321

Jia J.S., Lu X., Yuan Y., Xu G., Jia J., Christakis N.A. 2020. Population Flow Drives Spatio-Temporal Distribution of COVID-19 in China. Nature, 582(7812): 389–394. https://doi.org/10.1038/s41586-020-2284-y

Kaufmann V. 2014. Mobility as a Tool for Sociology. Sociologica, 8(1): 1–17.

Li B., Cai Z., Jiang L., Su Sh., Huang X. 2019. Exploring Urban Taxi Ridership and Local Associated Factors Using GPS Data and Geographically Weighted Regression. Cities, 87: 68–86. https://doi.org/10.1016/j.cities.2018.12.033

Li J., Li J., Yuan Y., Li G. 2019. Spatiotemporal Distribution Characteristics and Mechanism Analysis of Urban Population Density: A Case of Xi'an, Shaanxi, China. Cities, 86: 62–70. https://doi.org/10.1016/j.cities.2018.12.008

Liu X., Gong L., Gong Y., Liu Y. 2015. Revealing Travel Patterns and City Structure with Taxi Trip Data. Journal of transport Geography, 43: 78–90. https://doi.org/10.1016/j.jtrangeo.2015.01.016

Liu X., Sun L., Sun Q., Gao G. 2020. Spatial Variation of Taxi Demand Using GPS Trajectories and POI Data. Journal of Advanced Transportation, 1(2020): 7621576.

Long Y., Han H., Tu Y., Shu X. 2015. Evaluating the Effectiveness of Urban Growth Boundaries Using Human Mobility and Activity Records. Cities, 46: 76–84. https://doi.org/10.1016/j.cities.2015.05.001

Malleson N., Andresen M.A. 2015. The Impact of Using Social Media Data in Crime Rate Calculations: Shifting Hot Spots and Changing Spatial Patterns. Cartography and Geographic Information Science, 42(2): 112–121. https://doi.org/10.1080/15230406.2014.905756

Massobrio R., Nesmachnow S. 2020. Urban Mobility Data Analysis for Public Transportation Systems: a Case Study in Montevideo, Uruguay. Applied Sciences, 10(16): 5400. https://doi.org/10.3390/app10165400

Mulíček O., Osman R., Seidenglanz D. 2016. Time-Space Rhythms of the City – The Industrial and Postindustrial Brno. Environment and Planning A., 48(1): 115–131.

Sheller M., Urry J. 2006. The New Mobilities Paradigm. Environment and Planning A: Economy and Space, 38(2): 207–226. https://doi.org/10.1068/a37268.

Sturgeon B., Jarman N., Bryan D., Dixon J., Whyatt D., Hocking B.T., Huck J., Davies G., Tredoux C. 2020. Mobility, Sharing and Segregation in Belfast: Policy report. United Kingdom, Institute for Conflict Research, 58 p.

Veratti G., Fabbi S., Bigi A., Lupascu A., i Tinarelli G., Teggi S., Brusasca G., Butler T.M., Ghermandi G. 2020. Towards the Coupling of a Chemical Transport Model with a Micro-Scale Lagrangian Modelling System for Evaluation of Urban NOx Levels in a European Hotspot. Atmospheric Environment, 223: 117285. https://doi.org/10.1016/j.atmosenv.2020.117285

Wang Q., Taylor J.E. 2014. Quantifying Human Mobility Perturbation and Resilience in Hurricane Sandy. PLoS one, 9(11): e112608. https://doi.org/10.1371/journal.pone.0112608

Wang Z.J., Chen Z.-X., Wu J.-Y., Yu H.-W., Yao X.-M. 2020. Detecting Latent Urban Mobility Structure Using Mobile Phone Data. Modern Physics Letters B., 34(30): 2050342. https://doi.org/10.1142/S021798492050342X

Xu C., Zhang X., Liu L., Yue H., Zhou H., Zhou S. 2024. Are Villages in the City and Segregation Associated with Crime in Chinese Cities? An Assessment of Burglary in ZG City Using Satellite Images and Big Data. Cities, 149: 104979. https://doi.org/10.1016/j.cities.2024.104979

Xu Y., Belyi A., Bojic I., Ratti C. 2018. Human Mobility and Socioeconomic Status: Analysis of Singapore and Boston. Computers, Environment and Urban Systems, 72: 51–67. https://doi.org/10.1016/j.compenvurbsys.2018.04.001

Xu Y., Xue J., Park S., Yue Y. 2021. Towards a Multidimensional View of Tourist Mobility Patterns in Cities: A Mobile Phone Data Perspective. Computers, Environment and urban systems, 86: 101593. https://doi.org/10.1016/j.compenvurbsys.2020.101593

Yang M., Cheng C., Chen B. 2018. Mining Individual Similarity by Assessing Interactions with Personally Significant Places from GPS Trajectories. ISPRS international journal of geo-information, 7(3): 126. https://doi.org/10.3390/ijgi7030126

Yang X., Fang Z., Yin L., Li J., Lu S., Zhao Z. 2019. Revealing the Relationship of Human Convergence – Divergence Patterns and Land Use: A Case Study on Shenzhen City, China. Cities, 95: 102384. https://doi.org/10.1016/j.cities.2019.06.015

Zhao S., Zhuang Z., Cao P., Ran J., Gao D., Lou Y., Yang L., Cai Y., Wang W., He D., Wang M.H. 2020. Quantifying the Association Between Domestic Travel and the Exportation of Novel Coronavirus (2019-nCoV) Cases from Wuhan, China in 2020: a Correlational Analysis. Journal of travel medicine, 27(2): taaa022. https://doi.org/10.1093/jtm/taaa022


Просмотров аннотации: 93

Поделиться

Опубликован

2024-09-30

Как цитировать

Гдалин, А. Д. (2024). Тренды исследований мобильности населения –компонент пространственного поведения в городской среде. Региональные геосистемы, 48(3), 354-367. https://doi.org/10.52575/2712-7443-2024-48-3-354-367

Выпуск

Раздел

Науки о Земле