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Аннотация. Эоловые отложения и формы рельефа, имеющие повсеместное распространение на 

севере Западной Сибири, играют важную роль в развитии современных ландшафтов. Тем не менее, 

они нередко рассматриваются как уникальные и нетипичные для северных условий природные 

образования, а единое представление о закономерностях и фундаментальных причинах их 

возникновения на текущий момент отсутствует. Целью данного исследования является разработка 

общей концепции криогидроэолового рельефообразования в постледниковых материковых 

обстановках высоких широт. Исследование опирается на современные теоретические разработки в 

области водно-эолового и гляцио-эолового взаимодействия, а также на результаты многолетних 

полевых и дистанционных работ автора. Основным результатом является сформированное 

концептуальное представление эоловых морфолитосистем на севере Западной Сибири в качестве 

открытых иерархически организованных геоморфологических систем, в которых эоловые процессы 

функционально объединяют и завершают эрозионно-аккумулятивный цикл трансформации 

песчаных осадков, инициируемый рельефообразующим воздействием покровного оледенения. 

Разработанная концепция органически интегрирует существующую методологию открытых систем 

и формационный подход в геоморфологии, обеспечивая фундаментальную основу для 

прогнозирования ответной реакции северных эоловых морфолитосистем на масштабное 

антропогенное воздействие и долгосрочные климатические изменения. 

Ключевые слова: эоловый рельеф, Западная Сибирь, открытые системы, покровное оледенение, 
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Abstract. Aeolian deposits and landforms are widespread across the northern part of Western Siberia and play 

an important role in the evolution of contemporary landscapes. Nevertheless, they are often treated as natural 
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features that are unique and atypical for high-latitude environments, and there is still no unified view of the 

regularities and fundamental causes of their origin. The aim of this study is to develop a general concept of 

cryohydroaeolian landform development in postglacial continental settings of high latitudes. The research is 

based on recent theoretical advances in fluvial-aeolian and glacio-aeolian interactions, as well as on the 

author’s long-term field campaigns and remote-sensing analyses. The main result is a conceptual interpretation 

of aeolian morpholithosystems in northern Western Siberia as open, hierarchically organized 

geomorphological systems in which aeolian processes functionally integrate and complete the erosion-and-

accumulation cycle of sand transformation initiated by the landform-shaping impact of continental ice-sheet 

glaciation. The proposed concept organically integrates the existing methodology of open systems with the 

formational approach in geomorphology and provides a fundamental basis for predicting the response of 

northern aeolian morpholithosystems to large-scale anthropogenic disturbance and long-term climate change. 

Keywords: aeolian landforms; Western Siberia; open systems; ice-sheet glaciation; morpholithogenesis; 
geomorphological formation 
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Введение 

В настоящее время широкое развитие эолового рельефа и субаэральных отложений 

на севере Западной Сибири признано многими учеными [Величко, Тимирева, 2005; 

Зыкина и др., 2023]. Эоловый рельеф здесь выражен в виде котловин выдувания (раздувов 

и локальных песчаных обнажений), отдельных параболических дюн и относительно 

выровненных участков, сложенных покровными эолово-нивейными песками [Сизов, 

2015]. В научной литературе и фондовых материалах довольно часто приводятся 

отдельные полевые описания эоловых форм, основанные на простейших 

инструментальных и визуальных методах [Земцов, 1962]. Для некоторых районов 

встречаются оценки удельной площади развеваемых участков [Воскресенский, 2001]. 

Относительно хорошо изучена литология эоловых осадков [Земцов, 1976; Астахов, 

1999; Nazarov et al., 2022], получены результаты абсолютных датировок покровных песков 

[Forman et al., 2002; Nazarov et al., 2022]. Исследования позволили выделить специфический 

горизонт «байдарацкого эолия», включающего два разновременных горизонта оленьих и 

байдарацких песков, который имеет повсеместное распространение на Ямале и Гыдане при 

покровном облекающем залегании [Forman et al., 2002; Nazarov et al., 2022]. 

Отдельный блок работ посвящен динамике и флористическому составу 

растительности на песчаных обнажениях естественного и антропогенного происхождения 

[Москаленко, 1999; Коронатова, Миляева, 2011; Лоботросова, 2014; Капитонова и др., 

2017]. Большое внимание уделяется выявлению особенностей и ведущих факторов 

успешного первичного восстановления почвенного-растительного покрова на подвижных 

песках [Лоботросова, 2014]. 

В приведенных примерах исследований подробно рассматриваются различные 

геоморфологические, геологические и геоботанические аспекты развития эоловых форм 

рельефа на севере Западной Сибири. Тем не менее, можно констатировать, что единое 

представление об истории, закономерностях и фундаментальных причинах 

возникновения, расширения и сохранения этих уникальных для арктических условий 

природных образований на текущий момент отсутствует. 

В рамках данной работы предпринята попытка критического обобщения имеющихся в 
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литературе фактических материалов и результатов собственных многолетних исследований 

эолового рельефа на севере Западной Сибири в рамках концепции криогидроэолового 

рельефообразования в постледниковых материковых обстановках высоких широт. 

Необходимость подобного обобщения, помимо фундаментального геоморфологического 

значения, обусловлена практической необходимостью повышения детальности и 

достоверности прогнозирования ответной реакции северных эоловых морфолитосистем на 

масштабное антропогенное воздействие в связи с длительным освоением месторождений 

нефти и газа. Кроме того, критически важной является оценка устойчивости эолового рельефа 

в условиях долгосрочных климатических изменений, которые наиболее активно проявляются 

в арктических условиях. 

Объекты и методы исследования 

Одним из наиболее перспективных направлений, обеспечивающих 

методологический базис всестороннего изучения взаимосвязанных функциональных, 

временных и пространственных параметров эолового рельефа на севере Западной Сибири, 

является применение научных подходов общей теории систем, обозначенных в работе 

Берталанфи [Von Bertalanffy, 1950]. Ключевым концептуальным допущением в данном 

отношении является предложенное Р. Чорли [Chorley, 1962] выделение открытой, т.е. 

энергетически обусловленной, геоморфологической системы (ОГМС), основными 

свойствами которой являются: 

 зависимость от постоянного обмена энергией/массой с внешней средой; 

 возможность саморегуляции (самоорганизации) в процессе обмена для восста-

новления баланса притока и оттока массы и энергии; 

 наличие квазистационарного уровня (steady state, динамического равнове-

сия/баланса), который неизбежно меняется вслед за изменениями внешних и внутренних 

параметров. 

Р. Чорли [Chorley, 1962] предположил, что в стационарном состоянии рельеф 

самоорганизуется таким образом, чтобы сопротивление поверхности в каждой его точке 

было пропорционально прилагаемому напряжению потока. В результате достигается 

наиболее эффективный перенос массы и энергии входным потоком. ОГМС также 

способна импортировать избыточную свободную энергию потока (отрицательную 

энтропию) во внешнюю среду, сохраняя или даже повышая при этом внутреннюю 

организованность. Таким образом, Р. Чорли заложил основу аналитико-динамического 

изучения рельефа как результата (индикатора) энергетической настройки всей ОГМС. 

Идеи Р. Чорли практически сразу нашли поддержку и получили относительно 

широкое развитие в отечественной геоморфологии, в частности: 

 А.Д. Арманд [1963] на ряде примеров обосновал определяющее влияние обратных 

связей на саморазвитие различных типов рельефа (ледниковых, склоновых, русловых); 

 Н.А Флоренсов [1978] ввел понятие «геоморфологическая формация», подразу-

мевающего, что рельеф образуется в процессе воздействия на субстрат различных геогра-

фических факторов и ответной реакции субстрата на эти воздействия; 

 О.В. Кашменская [1980] впервые сформулировала и концептуально обосновала 

строгое определение геоморфологической системы в виде открытой, многоуровневой, са-

морегулирующейся подсистемы литосферы, обладающей свойствами динамического рав-

новесия, устойчивости, самоуправления, взаимосвязанности и эмерджентности. 

Основной движущей силой развития рельефа земной поверхности является 

взаимодействие эндогенных и экзогенных сил [Тимофеев, 1972; Флоренсов, 1978] или, в 

более общем смысле, энергетических полей Земли [Кашменская, 1980]. Исходя из этого, 

Н.А Флоренсов [1978] в рамках оригинального формационного подхода предлагает 

рассматривать рельеф в качестве индикатора баланса рельефообразующих 



Региональные геосистемы. 2025. Т. 49, № 4 (735–752) 
Regional geosystems. 2025 Vol. 49, No. 4 (735–752) 

 
 

738 

литодинамических потоков, его вещественным или материальным проявлением. На 

широкие возможности балансовых методов изучения процессов обмена веществом и 

энергией для количественной оценки межкопонентных и межформационных связей в 

ОГМС неоднократно указывала в своих работах О.В. Кашменская [1980]. 

Важной методологической особенностью является обязательное совместное 

рассмотрение в рамках геоморфологической формации не только закономерного 

сочетания форм земной поверхности и литодинамических потоков, но и геологического 

субстрата, его истории и структуры [Флоренсов, 1978] (триединая сущность «результат–

процесс–вещество» в рамках морфолитогенеза Ю.Г. Симонова с соавторами [1998]). По 

мнению Н.А. Флоренсова [1978] любой экспонированный геологический субстрат в 

любых природных условиях неизбежно преобразуется в различные формы рельефа. В 

более широкой трактовке В.О. Таргульяна [2019] указано, что если любая активная 

природная среда контактирует с твердофазным неинертным субстратом, то в его 

приповерхностном слое неизбежно начинается экзогенез. 

Результаты современных исследований показывают повсеместное распространение 

эоловых процессов («всюдность» В.П. Чичагова [2011]), при этом в семиаридных, 

субгумидных, гумидных и криоаридных районах эоловые агенты большую часть года 

неактивны. В остальное время они находятся в состоянии постоянной конкурентной 

борьбы за доступный субстрат. Конкуренция с другими агентами приводит в тому, что, 

например, водная эрозия и дефляция на одной и той же территории нередко проявляются 

совместно [Ларионов, 1993]. 

В работе [Field et al., 2009] на концептуальном уровне предложено два подхода к 

формализации водно-эолового взаимодействия: 

 климатический – активность взаимодействия здесь определяется количеством 

осадков (максимальная – в семиаридной зоне), при этом авторы не учитывают криоаридную 

зону со сниженной долей осадков, и не вводят более релевантные климатические показатели 

эвапотранспирации или дефляционного потенциала ветра (рис. 1); 

 мультимасштабный – наиболее активным взаимодействием, по мнению авто-

ров, характеризуется ландшафтный уровень (10
3
–10

5
 м), при этом наиболее востребованы 

для конкурирующих экзогенных агентов осадки песчано-алевритового гранулометриче-

ского состава (рис. 2). 

 

 
Рис. 1. Интенсивность взаимодействия эоловых и флювиальных процессов 

в зависимости от климатических условий (по: [Field et al., 2009] с изменениями) 

Fig. 1. Intensity of interaction between aeolian and fluvial processes 

depending on climatic conditions (from:[Field et al., 2009] with modifications) 
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Рис. 2. Интенсивность взаимодействия эоловых и флювиальных процессов 

в зависимости от масштабного уровня (по: [Field et al., 2009] с изменениями) 

Fig. 2. Intensity of interaction between aeolian and fluvial processes 

depending on the spatial scale (from:[Field et al., 2009] with modifications) 
 

В исследовании [Field et al., 2009] отмечено, что в зоне максимального 

взаимодействия, особенно в случае нарушения почвенно-растительного покрова, водный 

и ветровой потоки активно обмениваются материалом. В качестве непосредственного 

вещественного результата такого взаимодействия потоков можно привести водно-

эоловую фацию эоловых отложений, выделяемую при изучении покровных песчаных 

отложений, в частности, в Северной Европе [Kalińska‐Nartiša et al., 2017]. 

Более сложный тип взаимодействия, который в современной литературе нашел 

отражение в виде «гляциоэоловой» концепции [Derbyshire, Owen, 2018], определяется 

периодами глобального похолодания и развития покровных плейстоценовых оледенений. 

На примере Европы и Северной Америки детально изучены эоловые отложения и формы 

рельефа в экстрагляциальной и прогляциальной зонах [Brodzikowski, van Loon, 1990; 

Seppälä, 2004; Kutuzov et al., 2019]. Влияние оледенения в этом отношении проявляется 

сразу по нескольким направлениям [Derbyshire, Owen, 2018]: 

 накопление пылеватых и тонкозернистых частиц как непосредственно на по-

верхности ледника (осаждение из атмосферы), так и в результате водно-ледникового пе-

реноса (осаждение в подпрудных водоемах); 

 формирование устойчивого барического градиента и, как следствие, развитие 

катабатических ветров, обладающих значительным дефляционным потенциалом вне зави-

симости от времени года (особенно в период дегляциации). 

Авторы «гляцио-эоловой» концепции [Derbyshire, Owen, 2018] детально не 

раскрывают роль водно-ледниковых потоков при формировании материковых дюн, 

которые упоминаются только в рамках литературного обзора. Основное внимание 

уделяется мелкодисперсному материалу и его непосредственному переносу ветром на 

дальние расстояния (на примере European Sand Belt и других районов древней эоловой 

аккумуляции). Тем не менее «гляциоэоловую» концепцию можно рассматривать как 
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современное переосмысление более ранних представлений в четвертичной геологии об 

отнесении эоловых отложений материковых дюн к общему ряду сопряженных 

гляциогенных образований [Brodzikowski, van Loon, 1990]. 

Таким образом, в рамках данного исследования предлагается использовать научно 

обоснованные методологические допущения, о том, что эоловый рельеф на севере 

Западной Сибири является: 

 составной частью открытой иерархически организованной эоловой морфолито-

системы, т.е. развивается и сохраняет устойчивость непосредственно в результате ветро-

вого воздействия (отражает его интенсивность и длительность); 

 составной частью ледниковой геоморфологической формации – развивается в по-

стледниковой обстановке и имеет генетическую связь с песчаными водно-ледниковыми осад-

ками; 

 результатом конкурентного водно-эолового взаимодействия, т.е. имеет нераз-

рывную связь с процессами водной денудации и аккумуляции песчаного материала в ус-

ловиях гумидного и криоаридного климата. 

Результаты и их обсуждение 

Результаты многочисленных исследований [Земцов, 1976; Сизов, 2015, 2025b; 

Зыкина и др., 2017] показывают, что эоловая морфолитосистема, развивающаяся в 

постледниковых материковых обстановках (ЭМПМО) севера Западной Сибири, выражена 

на трех иерархических уровнях: 

 макроуровень – зона распространения покровного оледенения; 

 мезоуровень – зандровые равнины, долины стока талых ледниковых вод, при-

брежные зоны ледниково-подпрудных водоемов, речные террасы и дельты современных 

рек; 

 микроуровень – эоловые массивы, включающие котловины выдувания, пара-

болические дюны и участки оголенных развеваемых песков. 

Пространственные границы ЭМПМО на макроуровне совпадают с границами 

распространения покровных оледенений среднего и позднего неоплейстоцена  (рис. 3). На 

мезоуровне границы выделяются на основе детальной палеогеографической 

интерпретации геологического и геоморфологического строения территории [Земцов, 

1976]. На микроуровне основой для выделения границ служит ландшафтная индикация 

хвойных лишайниковых редколесий [Сизов и др., 2017]. 

По вертикали нижняя граница ЭМПМО прослеживается в зоне контакта эоловых 

песков с нижележащими водными или водно-ледниковыми осадками [Земцов, 1962; 

Nazarov et al., 2022]. Верхняя граница на участках оголенных песков непосредственно 

контактирует с нижней границей атмосферы, либо, в случае стабилизации подвижных 

песков почвенно-растительным покровом, проходит по контакту с элювиальным 

горизонтом подзолов [Сизов, 2015]. 

Таким образом, обобщенная геоморфологическая структура ЭМПМО состоит из 

следующих зон накопления и переноса песчаного материала: 

 зоны аккумуляции водно-ледниковых осадков (исходного субстрата) – включает 

пояс краевых ледниковых образований, зандровые равнины и ложбины стока талых лед-

никовых вод, а также участки развития временных ледниково-подпрудных водоемов 

[Sizov, 2021]; 

 транзитной зоны переноса и трансформации (переотложения) исходных водно-

ледниковых осадков – включает речные долины более молодого по отношению к оледе-

нению возраста (в т.ч. современные) [Зыкина и др., 2017]; 
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Рис. 3. Пространственное соотношение участков оголенных эоловых песков и конечно-моренных 

гряд: 1) древняя дельта р. Обь; 2) зандровые отложения к югу от конечной морены раннезырянского 

оледенения; 3) водно-ледниковые отложения в бассейне р.Мессояха; 4) водно-ледниковые  

отложения в зоне конечной морены карского (раннезырянского) оледенения;  

5) переотложенные водно-ледниковые отложения в долинах современных рек;  

6) зандровые отложения тазовского оледенения на водоразделах (МИС – морская изотопная стадия) 

Fig. 3. Spatial relationships between exposed aeolian sand areas and terminal moraine ridges:  

1) ancient Ob River delta; 2) outwash deposits to the south of the terminal moraine of the Early Zyryan  

glaciation; 3) fluvioglacial deposits in the Messoyakha River basin; 

4) fluvioglacial deposits in the zone of the terminal moraine of the Kara (Early Zyryan) glaciation; 

5) redeposited fluvioglacial deposits in the valleys of modern rivers; 

6) outwash deposits of the Taz glaciation on watersheds (MIS – marine isotope stage) 

 

 зоны аккумуляции производных эоловых осадков – для дюнной фации (парабо-

лические дюны, периферические валы и поперечные дюны котловин выдувания) охваты-

вает водораздельные пространства и прибрежные участки реки и озер, для водно-эоловой 

фаций (перевевание на отмелях) охватывает прибрежные участки водоемов; для покров-

ной фации отмечается практически повсеместное (плащеобразное, «всюдное») распро-

странение [Forman et al., 2002; Астахов, Назаров, 2010]. 

При строгом энергетически обусловленном формационном подходе к 

рассмотрению ЭМПМО можно выделить всего три базовых условия, которые необходимы 

для ее формирования, развития и сохранения устойчивости: 

1) наличие внешнего действия в виде устойчивого притока свободной энергии – 

достигается за счет активного (т.е. превышающего критический порог) ветрового воздей-

ствия, создаваемого, в частности, барическим градиентом в периоды смены глобальных 

климатических фаз потепления и похолодания (в конце неоплейстоцена градиент был 

обусловлен фронтом отступающего льда) [Сизов, 2025b]; 

2) отсутствие значимого внутреннего противодействия со стороны растительно-

сти (положительная обратная связь сильнее всех отрицательных) – решающее значение 
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имеет переменный гидрологический режим водных объектов, препятствующий развитию 

растительного покрова на прибрежных отмелях (режим обусловлен краткосрочными реч-

ными паводками и долгосрочными регрессиями ледниково-подпрудных озер и морских 

бассейнов); 

3) наличие доступного субстрата в виде песчаных осадков водно-ледникового и 

водного генезиса – развеванию преимущественно подвергаются устойчивые к физическо-

му выветриванию монокварцевые («зрелые») пески, которые в пределах рассматриваемой 

территории характеризуются широким пространственным распространением на всех гео-

морфологических уровнях [Sizov et al., 2020]. 

В рамках устойчивого развития внутренние процессы (функционирование) 

ЭМПМО совместно определяются процессами: 

 физического переноса песчаного материала водным потоком; 

 физического переноса песчаного материала воздушным потоком; 

 физического выветривания песчаного материала в условиях криолитозоны; 

 биологической стабилизации эолового рельефа растительностью; 

 антропогенной трансформации песчаного материала и форм рельефа в результа-

те прямого механического воздействия [Жеребятьева, Сизов, 2022; Сизов, 2025a]. 

Выходные литодинамические потоки ЭМПМО определяются особенностями 

перераспределения тепла и влаги в пределах эоловых массивов, выражающихся в 

формировании особых эолово обусловленных ландшафтных (геоботанических, 

зоологических, почвенных) ассоциаций [Сизов и др., 2017]. 

Ранее проведенные исследования [Сизов, 2025b] позволили выделить основные 

количественные показатели функционирования (динамики) ЭМПМО (см. таблицу), которые 

достаточно точно и достоверно определяются в ходе регулярных дистанционных и наземных 

наблюдений. Сравнительный анализ количественных показателей за различные временные 

периоды в полной мере обеспечивает возможность применения балансовых методов при 

выявлении особенностей и параметров внутренних и внешних связей ЭМПМО [Кашменская, 

1980]. Стоит отметить, что морфометрические и морфодинамические параметры эоловых 

форм рельефа являются основным способом выражения и индикатором обратных связей в 

ЭМПМО. Примеры положительных и отрицательных зависимостей показаны на рис. 4, 5. 
 

Количественные показатели динамики ЭМПМО 

Quantitative indicators of the dynamics of the Postglacial Continental Aeolian Morpholithosystem 

№ Показатель 
Единица 

измерения 
1. Мощность и разнообразие различных фаций эоловых отложений м 

2. 
Относительная высота поперечных дюн и аккумулятивных валов по 
периферии котловин выдувания 

м 

3. 
скорость смещения поперечных дюн и аккумулятивных валов по периферии 
котловин выдувания 

м/год 

4. Суммарная доля площади оголенных песков % 
5. Динамика площади оголенных песков га/год 

6. 
Линейные и угловые параметры котловин выдувания (площадь, периметр, 
глубина, наклон, ориентировка продольной и поперечной осей) 

га, км, 
м, ,  

7. 
Динамика эоловых наносов в пределах и по периферии котловин выдувания 
(межгодовая, сезонная) 

см/год 

8. 
Динамика уровня грунтовых вод (межгодовая, сезонная) в верхней части 
эоловой толщи и скорость заболачивания территории 

см/год 

9. Динамика зарастания подвижных песков га/год 
10. Динамика промерзания и оттаивания верхней части эоловой толщи см 

11. 
Динамика площади участков с механическими нарушениями почвенно-
растительного покрова 

га/год 
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Рис. 4. Пример положительной обратной связи в ЭМПМО 

Fig. 4. Example of positive feedback in the Postglacial Continental Aeolian Morpholithosystem 

 

 
Рис. 5. Пример негативной обратной связи в ЭМПМО 

Fig. 5. Example of negative feedback in the Postglacial Continental Aeolian Morpholithosystem 

 

Геолого-геоморфологической основой физической устойчивости ЭМПМО 

(возможности долгосрочного сохранения эоловых форм и их геоморфологической памяти) 

в рамках одного эрозионно-аккумулятивного цикла являются: 

 отсутствие естественных площадных эрозионных агентов на фоне устойчиво-

сти кварцевых зерен к выветриванию (физическому, криогенному); 

 отсутствие иных по отношению к эоловым условий для площадной аккумуля-

ции осадочного материала (за исключением биогенных остатков на участках заболачива-

ния); 

 промывной водный режим песчаной тощи в гумидных климатических условиях 

значительного переувлажнения территории; 

 низкий биопродуктивный потенциал песчаных пород, сдерживающий их дол-

госрочное закрепление почвенно-растительным покровом; 

 кратковременный и локальный характер антропогенного (механического) воз-

действия [Сизов, 2025a]. 
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Важно отметить, что физическая устойчивость ЭМПМО является основным 

геоэкологическим свойством, которое используется человеком в рамках хозяйственной 

деятельности [Sizov et al., 2022; Сизов и др., 2023]: 

 прямо – посредством размещения объектов инфраструктуры в пределах эоло-

вых массивов и в качестве строительного материала; 

 косвенно – посредством механического переноса эолового песчаного материа-

ла в пределы неустойчивых геоморфологических систем (мерзлые болота, поймы рек) для 

создания искусственного каркаса устойчивости. 

Пространственное развитие ЭМПМО в пределах рассматриваемой территории 

ограничивает высокая степень неоднородности гранулометрического состава, увлажнения 

и промерзания приповерхностного слоя. Широкое распространение ледниковых и водно-

ледниковых отложений суглинистого и глинистого состава создает условия для 

переувлажнения замкнутых понижений и выровненных водораздельных пространств. На 

участках заболачивания происходит аккумуляция органических осадков, локальному 

развеванию здесь подвергаются только вершины минеральных бугров и гряд пучения 

(литопальса). Длительное сезонное промерзание верхней части грунтовой толщи 

существенно сокращает период активного эолового переноса в течение года. В результате 

естественные анизотропные барьеры (ледниковые гряды, торфяные болота, участки 

развития многолетней мерзлоты) препятствуют формированию протяженных 

непрерывных зон эоловой дефляции и аккумуляции [Sizov, 2021]. 

Полученные результаты позволяют представить полный криогидроэоловый 

эрозионно-аккумулятивный цикл развития ЭМПМО в виде серии последовательных 

этапов, которые предполагают: 

1) формирование в ледниковых обстановках исходной толщи водно-ледниковых 

криогенно выветрелых («зрелых») песков на водоразделах и пологих склонах (леднико-

вый этап эрозии и аккумуляции); 

2) размыв и переотложение в водных обстановках исходной водно-ледниковой 

толщи с дальнейшей аккумуляцией фации перигляциального аллювия в пределах террасо-

вого комплекса всех основных рек (водный внеледниковый этап эрозии и аккумуляции); 

3) активизацию эоловой деятельности (дефляция и последующая аккумуляция 

дюнной, покровной и водно-эоловой фаций) на водоразделах, пологих склонах и речных 

террасах во время климатических изменений на фоне повышенного уровня водности и пе-

ременного гидрологического режима водных объектов (водно-эоловый этап эрозии и ак-

кумуляции). 

4) стабилизация и консервация (длительное сохранение) эоловых массивов путем 

формирования специфического сочетания почвенно-растительного покрова (лишайнико-

вые редколесья на подзолах) (эолово-биологический этап аккумуляции). 

При формировании и развитии ЭМПМО этапы 1 и 2 являются необходимыми, а 3 и 

4 – достаточными. В рамках открытой геоморфологической системы этапы 2 и 3 могут 

развиваться одновременно на различных участках в зависимости от локального сочетания 

соответствующих рельефообразующих факторов. 

Выделенные этапы эрозионно-аккумулятивного цикла развития ЭМПМО на севере 

Западной Сибири могут быть привязаны к абсолютной геохронологической шкале. Этому 

способствует накопленный к настоящему времени существенный массив абсолютных 

датировок эоловых песков, а также подстилающих и перекрывающих их четвертичных 

отложений различного генезиса [Астахов, Назаров, 2010; Sizov et al., 2020]. 

Геохронологические этапы развития ЭМПМО включают: 

I. Ледниковый этап (МИС-6/4): формирование обширных зандровых и озерно-

ледниковых аккумулятивных песчаных равнин. 

II. Водный внеледниковый этап (МИС-5/3): речное переотложение водно-
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ледниковых песчаных отложений, аккумуляция фации перигляциального аллювия в 

речных долинах. 

III. Водно-эоловый этап (МИС-2): формирование котловин выдувания и 

параболических дюн во время глобального климатического перехода от потепления к 

похолоданию и от похолодания к потеплению (эоловая активизация не ранее 34 тыс. л.н.; 

стабилизация – не позднее 12 тыс. л.н.). 

IV. Эолово-биологический этап (голоцен): повсеместно затухание эоловых 

процессов на фоне развития заболачивания и почвообразования (начиная с 12–11 тыс. л.н. 

до настоящего времени); эпизодическая эоловая активизация в результате локального 

сочетания благоприятных условий и антропогенного воздействия. 

Таким образом, результаты критического обобщения позволяют на основе 

методологии общей теории систем обосновать новую концепцию криогидроэолового 

развития в постледниковых материковых обстановках севера Западной Сибири особого 

типа эоловой морфолитосистемы. В общем виде ЭМПМО представляет собой открытую 

иерархически организованную геоморфологическую систему, в которой эоловые 

процессы функционально объединяют и завершают эрозионно-аккумулятивный цикл 

трансформации песчаных осадков, инициируемый рельефообразующим воздействием 

покровного оледенения. 

Существующие концепции водно-эолового [Field et al., 2009] и гляцио-эолового 

взаимодействия [Derbyshire, Owen, 2018], получившие за последние годы широкое 

признание в научной литературе, опираются на обширный фактический материал, 

полученный в результате длительного изучения материковых дюн в высокоширотных 

районах Европы, Северной и Южной Америки. В силу своей уникальности и 

интразональности, северные материковые дюны являются популярным у зарубежных 

ученых объектом исследований разнообразной тематики [McKee, 1979; Pye, Tsoar, 2009; 

Goudie, 2013; Lancaster et al., 2013; Livingstone, Warren, 2019; Lancaster, 2023], в частности: 

 значительное количество работ посвящено геологическим и палеогеографиче-

ским вопросам происхождения эоловых отложений в контексте климатических изменений 

и формирования рельефа в конце неоплейстоцена и начале голоцена; 

 сформирована обширная база данных абсолютных датировок эоловых отложе-

ний по всем континентам (более 5700 люминесцентных и 500 радиоуглеродных дат); 

 на примере песчаных дюн проводятся многочисленные исследования первич-

ных сукцессионных изменений растительности, расширяющих научное понимание зако-

номерностей смены и восстановления растительных сообществ в неустойчивых и экстре-

мальных условиях арктического климата; 

 появление огромного объема разнородных дистанционных данных (аэрофото-

снимки, космические снимки, лидарная съемка) стимулирует разнообразные исследования 

динамики природных процессов в пределах массивов подвижных песков (скорость пере-

мещения дюн, интенсивность эоловой аккумуляции, активность зарастания дюн и др.). 

Объединение двух концепций в рамках общего криогидроэолового взаимодействия 

представляется органичным шагом, поскольку на завершающем этапе покровных 

оледенений высвобождается значительный объем энергии не только воздушных, но и 

водных потоков. Период «обилия вод» в процессе дегляциации отмечали многие ученые 

за последнюю более чем вековую историю изучения последствий покровных оледенений, 

в т.ч. на примере Западной Сибири [Лунгерсгаузен, 1955; Земцов, 1962]. 

Для равнинных условий критически важным представляется учет 

геоморфологической памяти, которая обеспечивает устойчивую во времени 

парагенетическую связь различных типов рельефа и накопленного субстрата. 

Следовательно особенности взаимоотношений структурных элементов безусловно 

выступают одним из ключевых объектов системного анализа, а саму геоморфологическую 
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систему следует рассматривать как историко-генетическую [Асеев, 1987]. Именно 

введение времени как дополнительной переменной позволяет в рамках единого 

эрозионно-аккумулятивного цикла выделить все этапы преобразования песчаных осадков, 

которые могут быть значительно разнесены по временной шкале, но при этом сохранять 

явную парагенетическую связь. 

Предложенный Р. Чорли [Chorley, 1962] принцип локального энергетического 

баланса («напряжение потока  прочность субстрата»), за счет которого открытая система 

приходит в состояние динамического равновесия, не объясняет механизма развития 

системы в целом. Балансовый метод, предложенный О.В. Кашменской [1980], 

статистически показывает общую количественную динамику геоморфологической 

системы, не обладая при этом объяснительной силой, т.е. он не может использоваться при 

геоморфологическом моделировании и прогнозировании. При этом именно познание 

механизма рельефообразования Н.А. Флоренсов считал наиболее сложным, поскольку 

«одна и та же приближенная к поверхности структура субстрата … может породить 

разные морфологические образования и быть как доведена до высокой конформности 

внешних очертаний внутренним формам субстрата, так и уведена очень далеко от них» 

[Флоренсов, 1978, стр. 28]. 

Перспективной теоретической новацией может стать развитие в рамках 

предложенной концепции вариационного подхода к строгой формализации процесса 

саморазвития и саморегуляции открытой ЭМПМО. Вариационный подход позволяет 

прямо задать критерии оптимизации всей открытой системы в целом, на основе которых 

могут быть строго выведены морфологические параметры рельефа (высота дюны, уклоны 

наветренного и подветренного склона, величина междюнного расстояния и др.) в 

зависимости от различных режимов и типов потока [Phillips, 2021]. Это открывает 

широкие возможности для применения численных методов при решении как прямой 

(расчет морфометрии рельефа по параметрам потока), так и обратной (реконструкция 

потока по параметрам рельефа) задачи. Ключевое преимущество вариационного подхода 

состоит в том, что он позволяет описать геоморфологические механизмы с помощью 

универсальных физических законов и принципов, повышая таким образом уровень 

формализации и общенаучной универсальности в геоморфологии. 

Успешные примеры реализации вариационного подхода при моделировании 

процессов водной эрозии и дефляции почв [Huang, Nanson, 2000; Courrech du Pont et al., 

2014] явно демонстрируют высокий потенциал разработки данного направления. 

Применительно к открытой ЭМПМО в качестве фундаментального принципа 

саморазвития и саморегуляции можно предложить эффективную минимизацию свободной 

энергии ветрового потока всей совокупностью эоловых и генетически сопряженных с 

ними форм рельефа. 

Заключение 

Основным результатом проведенного исследования является детальное 

представление единой концепции криогидроэолового рельефообразования. Концепция 

предполагает рассмотрение эоловых морфолитосистем, развивающихся в постледниковых 

материковых обстановках севера Западной Сибири, в качестве открытых иерархически 

организованных геоморфологических систем, в которых эоловые процессы 

функционально объединяют и завершают эрозионно-аккумулятивный цикл 

трансформации песчаных осадков, инициируемый рельефообразующим воздействием 

покровного оледенения. 

Разработанная концепция позволяет интегрировать существующую методологию 

открытых систем, формационный подход, а также предложенные ранее концепции водно-

эолового и гляцио-эолового взаимодействия. Принципиальное отличие предлагаемой 
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концепции от существующих теоретических разработок определяется включением: 

 дополнительного промежуточного внеледникового этапа водного транзита ис-

ходных водно-ледниковых песчаных осадков; 

 положения о вторичной водно-эоловой активизации в рамках одного эрозионно-

аккумулятивного цикла (ледниковый этап необходим только в начальной фазе цикла). 

Геоморфологической основой пространственно-временной организации ЭМПМО, 

как способности сохранять определенный режим (порядок смены функциональных 

состояний) в определенных пространственных границах и временных рамках 

(устойчивость), является: 

 длительное сохранение физико-химических свойств «зрелых» водно-

ледниковых песчаных осадков (исходного субстрата), благодаря их устойчивости к физи-

ческому и криогенному выветриванию; 

 устойчивая генетическая взаимосвязь процессов водно-ледникового, водного и 

эолового рельефообразования, обеспечивающих последовательное (каскадное) преобразо-

вание песчаного материала (исходного субстрата); 

 эффективная минимизация свободной энергии ветрового потока всей совокуп-

ностью эоловых форм рельефа как фундаментальный физический вариационный принцип 

саморазвития и саморегуляции открытой эоловой морфолитосистемы. 

Такое разделение отвечает требованиям системной формализации и соответствует 

формуле формационного анализа Н.А. Флоренсова «субстрат – механизм – результат». 
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